//===-RTLs/generic-64bit/src/rtl.cpp - Target RTLs Implementation - C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // RTL for generic 64-bit machine // //===----------------------------------------------------------------------===// #include #include #include #include #include #include #include #include #include #include #include #include "Debug.h" #include "omptargetplugin.h" #ifndef TARGET_NAME #define TARGET_NAME Generic ELF - 64bit #endif #define DEBUG_PREFIX "TARGET " GETNAME(TARGET_NAME) " RTL" #ifndef TARGET_ELF_ID #define TARGET_ELF_ID 0 #endif #include "elf_common.h" #define NUMBER_OF_DEVICES 4 #define OFFLOADSECTIONNAME "omp_offloading_entries" /// Array of Dynamic libraries loaded for this target. struct DynLibTy { std::string FileName; void *Handle; }; /// Keep entries table per device. struct FuncOrGblEntryTy { __tgt_target_table Table; }; /// Class containing all the device information. class RTLDeviceInfoTy { std::vector> FuncGblEntries; public: std::list DynLibs; // Record entry point associated with device. void createOffloadTable(int32_t DeviceId, __tgt_offload_entry *Begin, __tgt_offload_entry *End) { assert(DeviceId < (int32_t)FuncGblEntries.size() && "Unexpected device id!"); FuncGblEntries[DeviceId].emplace_back(); FuncOrGblEntryTy &E = FuncGblEntries[DeviceId].back(); E.Table.EntriesBegin = Begin; E.Table.EntriesEnd = End; } // Return true if the entry is associated with device. bool findOffloadEntry(int32_t DeviceId, void *Addr) { assert(DeviceId < (int32_t)FuncGblEntries.size() && "Unexpected device id!"); FuncOrGblEntryTy &E = FuncGblEntries[DeviceId].back(); for (__tgt_offload_entry *I = E.Table.EntriesBegin, *End = E.Table.EntriesEnd; I < End; ++I) { if (I->addr == Addr) return true; } return false; } // Return the pointer to the target entries table. __tgt_target_table *getOffloadEntriesTable(int32_t DeviceId) { assert(DeviceId < (int32_t)FuncGblEntries.size() && "Unexpected device id!"); FuncOrGblEntryTy &E = FuncGblEntries[DeviceId].back(); return &E.Table; } RTLDeviceInfoTy(int32_t NumDevices) { FuncGblEntries.resize(NumDevices); } ~RTLDeviceInfoTy() { // Close dynamic libraries for (auto &Lib : DynLibs) { if (Lib.Handle) { dlclose(Lib.Handle); remove(Lib.FileName.c_str()); } } } }; static RTLDeviceInfoTy DeviceInfo(NUMBER_OF_DEVICES); #ifdef __cplusplus extern "C" { #endif int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *Image) { // If we don't have a valid ELF ID we can just fail. #if TARGET_ELF_ID < 1 return 0; #else return elf_check_machine(Image, TARGET_ELF_ID); #endif } int32_t __tgt_rtl_number_of_devices() { return NUMBER_OF_DEVICES; } int32_t __tgt_rtl_init_device(int32_t DeviceId) { return OFFLOAD_SUCCESS; } __tgt_target_table *__tgt_rtl_load_binary(int32_t DeviceId, __tgt_device_image *Image) { DP("Dev %d: load binary from " DPxMOD " image\n", DeviceId, DPxPTR(Image->ImageStart)); assert(DeviceId >= 0 && DeviceId < NUMBER_OF_DEVICES && "bad dev id"); size_t ImageSize = (size_t)Image->ImageEnd - (size_t)Image->ImageStart; size_t NumEntries = (size_t)(Image->EntriesEnd - Image->EntriesBegin); DP("Expecting to have %zd entries defined.\n", NumEntries); // Is the library version incompatible with the header file? if (elf_version(EV_CURRENT) == EV_NONE) { DP("Incompatible ELF library!\n"); return NULL; } // Obtain elf handler Elf *E = elf_memory((char *)Image->ImageStart, ImageSize); if (!E) { DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); return NULL; } if (elf_kind(E) != ELF_K_ELF) { DP("Invalid Elf kind!\n"); elf_end(E); return NULL; } // Find the entries section offset Elf_Scn *Section = 0; Elf64_Off EntriesOffset = 0; size_t Shstrndx; if (elf_getshdrstrndx(E, &Shstrndx)) { DP("Unable to get ELF strings index!\n"); elf_end(E); return NULL; } while ((Section = elf_nextscn(E, Section))) { GElf_Shdr Hdr; gelf_getshdr(Section, &Hdr); if (!strcmp(elf_strptr(E, Shstrndx, Hdr.sh_name), OFFLOADSECTIONNAME)) { EntriesOffset = Hdr.sh_addr; break; } } if (!EntriesOffset) { DP("Entries Section Offset Not Found\n"); elf_end(E); return NULL; } DP("Offset of entries section is (" DPxMOD ").\n", DPxPTR(EntriesOffset)); // load dynamic library and get the entry points. We use the dl library // to do the loading of the library, but we could do it directly to avoid the // dump to the temporary file. // // 1) Create tmp file with the library contents. // 2) Use dlopen to load the file and dlsym to retrieve the symbols. char TmpName[] = "/tmp/tmpfile_XXXXXX"; int TmpFd = mkstemp(TmpName); if (TmpFd == -1) { elf_end(E); return NULL; } FILE *Ftmp = fdopen(TmpFd, "wb"); if (!Ftmp) { elf_end(E); return NULL; } fwrite(Image->ImageStart, ImageSize, 1, Ftmp); fclose(Ftmp); DynLibTy Lib = {TmpName, dlopen(TmpName, RTLD_LAZY)}; if (!Lib.Handle) { DP("Target library loading error: %s\n", dlerror()); elf_end(E); return NULL; } DeviceInfo.DynLibs.push_back(Lib); struct link_map *LibInfo = (struct link_map *)Lib.Handle; // The place where the entries info is loaded is the library base address // plus the offset determined from the ELF file. Elf64_Addr EntriesAddr = LibInfo->l_addr + EntriesOffset; DP("Pointer to first entry to be loaded is (" DPxMOD ").\n", DPxPTR(EntriesAddr)); // Table of pointers to all the entries in the target. __tgt_offload_entry *EntriesTable = (__tgt_offload_entry *)EntriesAddr; __tgt_offload_entry *EntriesBegin = &EntriesTable[0]; __tgt_offload_entry *EntriesEnd = EntriesBegin + NumEntries; if (!EntriesBegin) { DP("Can't obtain entries begin\n"); elf_end(E); return NULL; } DP("Entries table range is (" DPxMOD ")->(" DPxMOD ")\n", DPxPTR(EntriesBegin), DPxPTR(EntriesEnd)); DeviceInfo.createOffloadTable(DeviceId, EntriesBegin, EntriesEnd); elf_end(E); return DeviceInfo.getOffloadEntriesTable(DeviceId); } void __tgt_rtl_print_device_info(int32_t DeviceId) { printf(" This is a generic-elf-64bit device\n"); } // Sample implementation of explicit memory allocator. For this plugin all kinds // are equivalent to each other. void *__tgt_rtl_data_alloc(int32_t DeviceId, int64_t Size, void *HstPtr, int32_t Kind) { void *Ptr = NULL; switch (Kind) { case TARGET_ALLOC_DEVICE: case TARGET_ALLOC_HOST: case TARGET_ALLOC_SHARED: case TARGET_ALLOC_DEFAULT: Ptr = malloc(Size); break; default: REPORT("Invalid target data allocation kind"); } return Ptr; } int32_t __tgt_rtl_data_submit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size) { memcpy(TgtPtr, HstPtr, Size); return OFFLOAD_SUCCESS; } int32_t __tgt_rtl_data_retrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size) { memcpy(HstPtr, TgtPtr, Size); return OFFLOAD_SUCCESS; } int32_t __tgt_rtl_data_delete(int32_t DeviceId, void *TgtPtr) { free(TgtPtr); return OFFLOAD_SUCCESS; } int32_t __tgt_rtl_run_target_team_region(int32_t DeviceId, void *TgtEntryPtr, void **TgtArgs, ptrdiff_t *TgtOffsets, int32_t ArgNum, int32_t TeamNum, int32_t ThreadLimit, uint64_t LoopTripcount /*not used*/) { // ignore team num and thread limit. // Use libffi to launch execution. ffi_cif Cif; // All args are references. std::vector ArgsTypes(ArgNum, &ffi_type_pointer); std::vector Args(ArgNum); std::vector Ptrs(ArgNum); for (int32_t I = 0; I < ArgNum; ++I) { Ptrs[I] = (void *)((intptr_t)TgtArgs[I] + TgtOffsets[I]); Args[I] = &Ptrs[I]; } ffi_status Status = ffi_prep_cif(&Cif, FFI_DEFAULT_ABI, ArgNum, &ffi_type_void, &ArgsTypes[0]); assert(Status == FFI_OK && "Unable to prepare target launch!"); if (Status != FFI_OK) return OFFLOAD_FAIL; DP("Running entry point at " DPxMOD "...\n", DPxPTR(TgtEntryPtr)); void (*Entry)(void); *((void **)&Entry) = TgtEntryPtr; ffi_call(&Cif, Entry, NULL, &Args[0]); return OFFLOAD_SUCCESS; } int32_t __tgt_rtl_run_target_region(int32_t DeviceId, void *TgtEntryPtr, void **TgtArgs, ptrdiff_t *TgtOffsets, int32_t ArgNum) { // use one team and one thread. return __tgt_rtl_run_target_team_region(DeviceId, TgtEntryPtr, TgtArgs, TgtOffsets, ArgNum, 1, 1, 0); } #ifdef __cplusplus } #endif