# RUN: %PYTHON %s | FileCheck %s from mlir.ir import * from mlir.dialects import builtin from mlir.dialects import linalg from mlir.dialects import std from mlir.dialects.linalg.opdsl.lang import * # This tests miscellaneous features of the emitter that are not tested by the # matmul, convolution, or, pooling tests. The features include: # - constant defined in the body # - fix/predefined types # - exponential functions # - custom op names. @linalg_structured_op def fill_rng_poly( min=ScalarDef(F64), max=ScalarDef(F64), seed=ScalarDef(I32), O=TensorDef(T, S.M, S.N, output=True)): multiplier = TypeFn.cast(I32, const(1103515245)) increment = TypeFn.cast(I32, const(12345)) rand1 = (TypeFn.cast(I32, index(D.m)) + seed) * multiplier + increment rand2 = (TypeFn.cast(I32, index(D.n)) + rand1) * multiplier + increment inv_range = TypeFn.cast(F64, const(2.3283064e-10)) offset = TypeFn.cast(F64, const(2147483647)) scaling = (max - min) * inv_range O[D.m, D.n] = TypeFn.cast(T, (offset + TypeFn.cast(F64, rand2)) * scaling + min) @linalg_structured_op def soft_plus_poly( I=TensorDef(T, S.M, S.N), O=TensorDef(U, S.M, S.N, output=True)): O[D.m, D.n] = ArithFn.log( TypeFn.cast(U, const(1.0)) + TypeFn.cast(U, ArithFn.exp(I[D.m, D.n]))) @linalg_structured_op(op_name="custom_op_name") def non_default_op_name(I=TensorDef(T, S.N), O=TensorDef(T, S.N, output=True)): O[D.n] = I[D.n] with Context() as ctx, Location.unknown(): module = Module.create() f32 = F32Type.get() f64 = F64Type.get() i32 = IntegerType.get_signless(32) with InsertionPoint(module.body): # CHECK-LABEL: @test_i32_fill_rng # CHECK: ^{{.*}}(%[[MIN:.+]]: f64, %[[MAX:.+]]: f64, %[[SEED:.+]]: i32, %{{.*}} # CHECK-DAG: %[[IDX0:.+]] = linalg.index 0 : index # CHECK-DAG: %[[IDX0_CAST:.+]] = arith.index_cast %[[IDX0]] : index to i32 # CHECK-DAG: %[[RND0:.+]] = arith.addi %[[IDX0_CAST]], %[[SEED]] : i32 # CHECK-DAG: %[[CST0:.+]] = arith.constant 1103515245 : i64 # CHECK-DAG: %[[CST0_CAST:.+]] = arith.trunci %[[CST0]] : i64 to i32 # Skip the remaining random number computation and match the scaling logic. # CHECK-DAG: %[[DIFF:.+]] = arith.subf %[[MAX]], %[[MIN]] : f64 # CHECK-DAG: %[[CST3:.+]] = arith.constant 2.3283063999999999E-10 : f64 # CHECK-DAG: %[[FACT:.+]] = arith.mulf %[[DIFF]], %[[CST3]] : f64 # CHECK-DAG: %[[RND4:.+]] = arith.mulf %{{.+}}, %[[FACT]] : f64 # CHECK-DAG: %[[RND5:.+]] = arith.addf %[[RND4]], %[[MIN]] : f64 # CHECK-DAG: %{{.*}} = arith.fptosi %[[RND5]] : f64 to i32 @builtin.FuncOp.from_py_func(f64, f64, i32, RankedTensorType.get((4, 16), i32)) def test_i32_fill_rng(min, max, seed, init_result): return fill_rng_poly(min, max, seed, outs=[init_result]) # CHECK-LABEL: @test_f32_soft_plus # CHECK: ^{{.*}}(%[[IN:.+]]: f32, %[[OUT:.+]]: f32) # CHECK-NEXT: %[[C1:.+]] = arith.constant 1.000000e+00 : f64 # CHECK-NEXT: %[[C1_CAST:.+]] = arith.truncf %[[C1]] : f64 to f32 # CHECK-NEXT: %[[EXP:.+]] = math.exp %[[IN]] : f32 # CHECK-NEXT: %[[SUM:.+]] = arith.addf %[[C1_CAST]], %[[EXP]] : f32 # CHECK-NEXT: %[[LOG:.+]] = math.log %[[SUM]] : f32 # CHECK-NEXT: linalg.yield %[[LOG]] : f32 # CHECK-NEXT: -> tensor<4x16xf32> @builtin.FuncOp.from_py_func( RankedTensorType.get((4, 16), f32), RankedTensorType.get((4, 16), f32)) def test_f32_soft_plus(input, init_result): return soft_plus_poly(input, outs=[init_result]) # Just check that we don't assert out on name mismatch. # CHECK-LABEL: @test_non_default_op_name @builtin.FuncOp.from_py_func( RankedTensorType.get((42,), f32), RankedTensorType.get((42,), f32)) def test_non_default_op_name(input, init_result): return non_default_op_name(input, outs=[init_result]) print(module)