# RUN: %PYTHON -m mlir.dialects.linalg.opdsl.dump_oplib --file %s | FileCheck %s from mlir.dialects.linalg.opdsl.lang import * # CHECK: --- # CHECK-LABEL: matmul # CHECK: args: # CHECK: name: A # CHECK: usage: InputOperand # CHECK: type_var: T # CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)> # CHECK: name: B # CHECK: usage: InputOperand # CHECK: type_var: T # CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s1, s2)> # CHECK: name: C # CHECK: usage: OutputOperand # CHECK: type_var: U # CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)> @linalg_structured_op def matmul( A=TensorDef(T, S.M, S.K), B=TensorDef(T, S.K, S.N), C=TensorDef(U, S.M, S.N, output=True)): C[D.m, D.n] += TypeFn.cast(U, A[D.m, D.k]) * TypeFn.cast(U, B[D.k, D.n]) # CHECK: --- # CHECK-LABEL: fill # CHECK: args: # CHECK: name: value # CHECK: usage: InputOperand # CHECK-NOT: shape_map: # CHECK: type_var: T @linalg_structured_op def fill(value=ScalarDef(T), O=TensorDef(T, S.M, S.K, output=True)): O[D.m, D.n] = value # CHECK: --- # CHECK-LABEL: strided_copy # CHECK: args: # CHECK: name: I # CHECK: usage: InputOperand # CHECK: type_var: T # CHECK: shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s0, s1)> # CHECK: name: O # CHECK: usage: OutputOperand # CHECK: type_var: T # CHECK: shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s2, s3)> # CHECK: name: strides # CHECK: usage: IndexAttribute # CHECK: type_var: I64 # CHECK: attribute_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s4, s5)> @linalg_structured_op def strided_copy( I=TensorDef(T, S.IH, S.IW), O=TensorDef(T, S.OH, S.OW, output=True), strides=IndexAttrDef(S.SH, S.SW)): O[D.oh, D.ow] = I[D.oh * S.SH, D.ow * S.SW]