; RUN: mlir-translate -import-llvm %s | FileCheck %s %struct.t = type {} %struct.s = type { %struct.t, i64 } ; CHECK: llvm.mlir.global external @g1() {alignment = 8 : i64} : !llvm.struct<"struct.s", (struct<"struct.t", ()>, i64)> @g1 = external global %struct.s, align 8 ; CHECK: llvm.mlir.global external @g2() {alignment = 8 : i64} : f64 @g2 = external global double, align 8 ; CHECK: llvm.mlir.global internal @g3("string") @g3 = internal global [6 x i8] c"string" ; CHECK: llvm.mlir.global external @g5() : vector<8xi32> @g5 = external global <8 x i32> ; CHECK: llvm.mlir.global private @alig32(42 : i64) {alignment = 32 : i64, dso_local} : i64 @alig32 = private global i64 42, align 32 ; CHECK: llvm.mlir.global private @alig64(42 : i64) {alignment = 64 : i64, dso_local} : i64 @alig64 = private global i64 42, align 64 @g4 = external global i32, align 8 ; CHECK: llvm.mlir.global internal constant @int_gep() {dso_local} : !llvm.ptr { ; CHECK-DAG: %[[addr:[0-9]+]] = llvm.mlir.addressof @g4 : !llvm.ptr ; CHECK-DAG: %[[c2:[0-9]+]] = llvm.mlir.constant(2 : i32) : i32 ; CHECK-NEXT: %[[gepinit:[0-9]+]] = llvm.getelementptr %[[addr]][%[[c2]]] : (!llvm.ptr, i32) -> !llvm.ptr ; CHECK-NEXT: llvm.return %[[gepinit]] : !llvm.ptr ; CHECK-NEXT: } @int_gep = internal constant i32* getelementptr (i32, i32* @g4, i32 2) ; ; dso_local attribute ; ; CHECK: llvm.mlir.global external @dso_local_var() {dso_local} : !llvm.struct<"struct.s", (struct<"struct.t", ()>, i64)> @dso_local_var = external dso_local global %struct.s ; ; thread_local attribute ; ; CHECK: llvm.mlir.global external thread_local @thread_local_var() : !llvm.struct<"struct.s", (struct<"struct.t", ()>, i64)> @thread_local_var = external thread_local global %struct.s ; ; addr_space attribute ; ; CHECK: llvm.mlir.global external @addr_space_var(0 : i32) {addr_space = 6 : i32} : i32 @addr_space_var = addrspace(6) global i32 0 ; ; Linkage attribute. ; ; CHECK: llvm.mlir.global private @private(42 : i32) {dso_local} : i32 @private = private global i32 42 ; CHECK: llvm.mlir.global internal @internal(42 : i32) {dso_local} : i32 @internal = internal global i32 42 ; CHECK: llvm.mlir.global available_externally @available_externally(42 : i32) : i32 @available_externally = available_externally global i32 42 ; CHECK: llvm.mlir.global linkonce @linkonce(42 : i32) : i32 @linkonce = linkonce global i32 42 ; CHECK: llvm.mlir.global weak @weak(42 : i32) : i32 @weak = weak global i32 42 ; CHECK: llvm.mlir.global common @common(0 : i32) : i32 @common = common global i32 zeroinitializer ; CHECK: llvm.mlir.global appending @appending(dense<[0, 1]> : tensor<2xi32>) : !llvm.array<2 x i32> @appending = appending global [2 x i32] [i32 0, i32 1] ; CHECK: llvm.mlir.global extern_weak @extern_weak() : i32 @extern_weak = extern_weak global i32 ; CHECK: llvm.mlir.global linkonce_odr @linkonce_odr(42 : i32) : i32 @linkonce_odr = linkonce_odr global i32 42 ; CHECK: llvm.mlir.global weak_odr @weak_odr(42 : i32) : i32 @weak_odr = weak_odr global i32 42 ; CHECK: llvm.mlir.global external @external() : i32 @external = external global i32 ; ; UnnamedAddr attribute. ; ; CHECK: llvm.mlir.global private constant @no_unnamed_addr(42 : i64) {dso_local} : i64 @no_unnamed_addr = private constant i64 42 ; CHECK: llvm.mlir.global private local_unnamed_addr constant @local_unnamed_addr(42 : i64) {dso_local} : i64 @local_unnamed_addr = private local_unnamed_addr constant i64 42 ; CHECK: llvm.mlir.global private unnamed_addr constant @unnamed_addr(42 : i64) {dso_local} : i64 @unnamed_addr = private unnamed_addr constant i64 42 ; ; Section attribute ; ; CHECK: llvm.mlir.global internal constant @sectionvar("teststring") {dso_local, section = ".mysection"} @sectionvar = internal constant [10 x i8] c"teststring", section ".mysection" ; ; Sequential constants. ; ; CHECK: llvm.mlir.global internal constant @vector_constant(dense<[1, 2]> : vector<2xi32>) {dso_local} : vector<2xi32> @vector_constant = internal constant <2 x i32> ; CHECK: llvm.mlir.global internal constant @array_constant(dense<[1.000000e+00, 2.000000e+00]> : tensor<2xf32>) {dso_local} : !llvm.array<2 x f32> @array_constant = internal constant [2 x float] [float 1., float 2.] ; CHECK: llvm.mlir.global internal constant @nested_array_constant(dense<[{{\[}}1, 2], [3, 4]]> : tensor<2x2xi32>) {dso_local} : !llvm.array<2 x array<2 x i32>> @nested_array_constant = internal constant [2 x [2 x i32]] [[2 x i32] [i32 1, i32 2], [2 x i32] [i32 3, i32 4]] ; CHECK: llvm.mlir.global internal constant @nested_array_constant3(dense<[{{\[}}[1, 2], [3, 4]]]> : tensor<1x2x2xi32>) {dso_local} : !llvm.array<1 x array<2 x array<2 x i32>>> @nested_array_constant3 = internal constant [1 x [2 x [2 x i32]]] [[2 x [2 x i32]] [[2 x i32] [i32 1, i32 2], [2 x i32] [i32 3, i32 4]]] ; CHECK: llvm.mlir.global internal constant @nested_array_vector(dense<[{{\[}}[1, 2], [3, 4]]]> : vector<1x2x2xi32>) {dso_local} : !llvm.array<1 x array<2 x vector<2xi32>>> @nested_array_vector = internal constant [1 x [2 x <2 x i32>]] [[2 x <2 x i32>] [<2 x i32> , <2 x i32> ]] ; ; Linkage on functions. ; ; CHECK: llvm.func internal @func_internal define internal void @func_internal() { ret void } ; CHECK: llvm.func @fe(i32) -> f32 declare float @fe(i32) ; CHECK: llvm.func internal spir_funccc @spir_func_internal() define internal spir_func void @spir_func_internal() { ret void } ; FIXME: function attributes. ; CHECK-LABEL: llvm.func internal @f1(%arg0: i64) -> i32 attributes {dso_local} { ; CHECK-DAG: %[[c2:[0-9]+]] = llvm.mlir.constant(2 : i32) : i32 ; CHECK-DAG: %[[c42:[0-9]+]] = llvm.mlir.constant(42 : i32) : i32 ; CHECK-DAG: %[[c1:[0-9]+]] = llvm.mlir.constant(true) : i1 ; CHECK-DAG: %[[c43:[0-9]+]] = llvm.mlir.constant(43 : i32) : i32 define internal dso_local i32 @f1(i64 %a) norecurse { entry: ; CHECK: %{{[0-9]+}} = llvm.inttoptr %arg0 : i64 to !llvm.ptr %aa = inttoptr i64 %a to i64* ; %[[addrof:[0-9]+]] = llvm.mlir.addressof @g2 : !llvm.ptr ; %[[addrof2:[0-9]+]] = llvm.mlir.addressof @g2 : !llvm.ptr ; %{{[0-9]+}} = llvm.inttoptr %arg0 : i64 to !llvm.ptr ; %{{[0-9]+}} = llvm.ptrtoint %[[addrof2]] : !llvm.ptr to i64 ; %{{[0-9]+}} = llvm.getelementptr %[[addrof]][%3] : (!llvm.ptr, i32) -> !llvm.ptr %bb = ptrtoint double* @g2 to i64 %cc = getelementptr double, double* @g2, i32 2 ; CHECK: %[[b:[0-9]+]] = llvm.trunc %arg0 : i64 to i32 %b = trunc i64 %a to i32 ; CHECK: %[[c:[0-9]+]] = llvm.call @fe(%[[b]]) : (i32) -> f32 %c = call float @fe(i32 %b) ; CHECK: %[[d:[0-9]+]] = llvm.fptosi %[[c]] : f32 to i32 %d = fptosi float %c to i32 ; FIXME: icmp should return i1. ; CHECK: %[[e:[0-9]+]] = llvm.icmp "ne" %[[d]], %[[c2]] : i32 %e = icmp ne i32 %d, 2 ; CHECK: llvm.cond_br %[[e]], ^bb1, ^bb2 br i1 %e, label %if.then, label %if.end ; CHECK: ^bb1: if.then: ; CHECK: llvm.return %[[c42]] : i32 ret i32 42 ; CHECK: ^bb2: if.end: ; CHECK: %[[orcond:[0-9]+]] = llvm.or %[[e]], %[[c1]] : i1 %or.cond = or i1 %e, 1 ; CHECK: llvm.return %[[c43]] ret i32 43 } ; Test that instructions that dominate can be out of sequential order. ; CHECK-LABEL: llvm.func @f2(%arg0: i64) -> i64 { ; CHECK-DAG: %[[c3:[0-9]+]] = llvm.mlir.constant(3 : i64) : i64 define i64 @f2(i64 %a) noduplicate { entry: ; CHECK: llvm.br ^bb2 br label %next ; CHECK: ^bb1: end: ; CHECK: llvm.return %1 ret i64 %b ; CHECK: ^bb2: next: ; CHECK: %1 = llvm.add %arg0, %[[c3]] : i64 %b = add i64 %a, 3 ; CHECK: llvm.br ^bb1 br label %end } ; Test arguments/phis. ; CHECK-LABEL: llvm.func @f2_phis(%arg0: i64) -> i64 { ; CHECK-DAG: %[[c3:[0-9]+]] = llvm.mlir.constant(3 : i64) : i64 define i64 @f2_phis(i64 %a) noduplicate { entry: ; CHECK: llvm.br ^bb2 br label %next ; CHECK: ^bb1(%1: i64): end: %c = phi i64 [ %b, %next ] ; CHECK: llvm.return %1 ret i64 %c ; CHECK: ^bb2: next: ; CHECK: %2 = llvm.add %arg0, %[[c3]] : i64 %b = add i64 %a, 3 ; CHECK: llvm.br ^bb1 br label %end } ; CHECK-LABEL: llvm.func @f3() -> !llvm.ptr define i32* @f3() { ; CHECK: %[[c:[0-9]+]] = llvm.mlir.addressof @g2 : !llvm.ptr ; CHECK: %[[b:[0-9]+]] = llvm.bitcast %[[c]] : !llvm.ptr to !llvm.ptr ; CHECK: llvm.return %[[b]] : !llvm.ptr ret i32* bitcast (double* @g2 to i32*) } ; CHECK-LABEL: llvm.func @f4() -> !llvm.ptr define i32* @f4() { ; CHECK: %[[b:[0-9]+]] = llvm.mlir.null : !llvm.ptr ; CHECK: llvm.return %[[b]] : !llvm.ptr ret i32* bitcast (double* null to i32*) } ; CHECK-LABEL: llvm.func @f5 define void @f5(i32 %d) { ; FIXME: icmp should return i1. ; CHECK: = llvm.icmp "eq" %1 = icmp eq i32 %d, 2 ; CHECK: = llvm.icmp "slt" %2 = icmp slt i32 %d, 2 ; CHECK: = llvm.icmp "sle" %3 = icmp sle i32 %d, 2 ; CHECK: = llvm.icmp "sgt" %4 = icmp sgt i32 %d, 2 ; CHECK: = llvm.icmp "sge" %5 = icmp sge i32 %d, 2 ; CHECK: = llvm.icmp "ult" %6 = icmp ult i32 %d, 2 ; CHECK: = llvm.icmp "ule" %7 = icmp ule i32 %d, 2 ; CHECK: = llvm.icmp "ugt" %8 = icmp ugt i32 %d, 2 ret void } ; CHECK-LABEL: llvm.func @f6(%arg0: !llvm.ptr>) define void @f6(void (i16) *%fn) { ; CHECK: %[[c:[0-9]+]] = llvm.mlir.constant(0 : i16) : i16 ; CHECK: llvm.call %arg0(%[[c]]) call void %fn(i16 0) ret void } ; CHECK-LABEL: llvm.func @FPArithmetic(%arg0: f32, %arg1: f32, %arg2: f64, %arg3: f64) define void @FPArithmetic(float %a, float %b, double %c, double %d) { ; CHECK: %[[a1:[0-9]+]] = llvm.mlir.constant(3.030000e+01 : f64) : f64 ; CHECK: %[[a2:[0-9]+]] = llvm.mlir.constant(3.030000e+01 : f32) : f32 ; CHECK: %[[a3:[0-9]+]] = llvm.fadd %[[a2]], %arg0 : f32 %1 = fadd float 0x403E4CCCC0000000, %a ; CHECK: %[[a4:[0-9]+]] = llvm.fadd %arg0, %arg1 : f32 %2 = fadd float %a, %b ; CHECK: %[[a5:[0-9]+]] = llvm.fadd %[[a1]], %arg2 : f64 %3 = fadd double 3.030000e+01, %c ; CHECK: %[[a6:[0-9]+]] = llvm.fsub %arg0, %arg1 : f32 %4 = fsub float %a, %b ; CHECK: %[[a7:[0-9]+]] = llvm.fsub %arg2, %arg3 : f64 %5 = fsub double %c, %d ; CHECK: %[[a8:[0-9]+]] = llvm.fmul %arg0, %arg1 : f32 %6 = fmul float %a, %b ; CHECK: %[[a9:[0-9]+]] = llvm.fmul %arg2, %arg3 : f64 %7 = fmul double %c, %d ; CHECK: %[[a10:[0-9]+]] = llvm.fdiv %arg0, %arg1 : f32 %8 = fdiv float %a, %b ; CHECK: %[[a12:[0-9]+]] = llvm.fdiv %arg2, %arg3 : f64 %9 = fdiv double %c, %d ; CHECK: %[[a11:[0-9]+]] = llvm.frem %arg0, %arg1 : f32 %10 = frem float %a, %b ; CHECK: %[[a13:[0-9]+]] = llvm.frem %arg2, %arg3 : f64 %11 = frem double %c, %d ; CHECK: %{{.+}} = llvm.fneg %{{.+}} : f32 %12 = fneg float %a ; CHECK: %{{.+}} = llvm.fneg %{{.+}} : f64 %13 = fneg double %c ret void } ; CHECK-LABEL: llvm.func @FPComparison(%arg0: f32, %arg1: f32) define void @FPComparison(float %a, float %b) { ; CHECK: llvm.fcmp "_false" %arg0, %arg1 %1 = fcmp false float %a, %b ; CHECK: llvm.fcmp "oeq" %arg0, %arg1 %2 = fcmp oeq float %a, %b ; CHECK: llvm.fcmp "ogt" %arg0, %arg1 %3 = fcmp ogt float %a, %b ; CHECK: llvm.fcmp "oge" %arg0, %arg1 %4 = fcmp oge float %a, %b ; CHECK: llvm.fcmp "olt" %arg0, %arg1 %5 = fcmp olt float %a, %b ; CHECK: llvm.fcmp "ole" %arg0, %arg1 %6 = fcmp ole float %a, %b ; CHECK: llvm.fcmp "one" %arg0, %arg1 %7 = fcmp one float %a, %b ; CHECK: llvm.fcmp "ord" %arg0, %arg1 %8 = fcmp ord float %a, %b ; CHECK: llvm.fcmp "ueq" %arg0, %arg1 %9 = fcmp ueq float %a, %b ; CHECK: llvm.fcmp "ugt" %arg0, %arg1 %10 = fcmp ugt float %a, %b ; CHECK: llvm.fcmp "uge" %arg0, %arg1 %11 = fcmp uge float %a, %b ; CHECK: llvm.fcmp "ult" %arg0, %arg1 %12 = fcmp ult float %a, %b ; CHECK: llvm.fcmp "ule" %arg0, %arg1 %13 = fcmp ule float %a, %b ; CHECK: llvm.fcmp "une" %arg0, %arg1 %14 = fcmp une float %a, %b ; CHECK: llvm.fcmp "uno" %arg0, %arg1 %15 = fcmp uno float %a, %b ; CHECK: llvm.fcmp "_true" %arg0, %arg1 %16 = fcmp true float %a, %b ret void } ; Testing rest of the floating point constant kinds. ; CHECK-LABEL: llvm.func @FPConstant(%arg0: f16, %arg1: bf16, %arg2: f128, %arg3: f80) define void @FPConstant(half %a, bfloat %b, fp128 %c, x86_fp80 %d) { ; CHECK-DAG: %[[C0:.+]] = llvm.mlir.constant(7.000000e+00 : f80) : f80 ; CHECK-DAG: %[[C1:.+]] = llvm.mlir.constant(0.000000e+00 : f128) : f128 ; CHECK-DAG: %[[C2:.+]] = llvm.mlir.constant(1.000000e+00 : bf16) : bf16 ; CHECK-DAG: %[[C3:.+]] = llvm.mlir.constant(1.000000e+00 : f16) : f16 ; CHECK: llvm.fadd %[[C3]], %arg0 : f16 %1 = fadd half 1.0, %a ; CHECK: llvm.fadd %[[C2]], %arg1 : bf16 %2 = fadd bfloat 1.0, %b ; CHECK: llvm.fadd %[[C1]], %arg2 : f128 %3 = fadd fp128 0xL00000000000000000000000000000000, %c ; CHECK: llvm.fadd %[[C0]], %arg3 : f80 %4 = fadd x86_fp80 0xK4001E000000000000000, %d ret void } ; ; Functions as constants. ; ; Calling the function that has not been defined yet. ; CHECK-LABEL: @precaller define i32 @precaller() { %1 = alloca i32 ()* ; CHECK: %[[func:.*]] = llvm.mlir.addressof @callee : !llvm.ptr> ; CHECK: llvm.store %[[func]], %[[loc:.*]] store i32 ()* @callee, i32 ()** %1 ; CHECK: %[[indir:.*]] = llvm.load %[[loc]] %2 = load i32 ()*, i32 ()** %1 ; CHECK: llvm.call %[[indir]]() %3 = call i32 %2() ret i32 %3 } define i32 @callee() { ret i32 42 } ; Calling the function that has been defined. ; CHECK-LABEL: @postcaller define i32 @postcaller() { %1 = alloca i32 ()* ; CHECK: %[[func:.*]] = llvm.mlir.addressof @callee : !llvm.ptr> ; CHECK: llvm.store %[[func]], %[[loc:.*]] store i32 ()* @callee, i32 ()** %1 ; CHECK: %[[indir:.*]] = llvm.load %[[loc]] %2 = load i32 ()*, i32 ()** %1 ; CHECK: llvm.call %[[indir]]() %3 = call i32 %2() ret i32 %3 } @_ZTIi = external dso_local constant i8* @_ZTIii= external dso_local constant i8** declare void @foo(i8*) declare i8* @bar(i8*) declare i32 @__gxx_personality_v0(...) ; CHECK-LABEL: @invokeLandingpad define i32 @invokeLandingpad() personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) { ; CHECK: %[[a1:[0-9]+]] = llvm.bitcast %{{[0-9]+}} : !llvm.ptr>> to !llvm.ptr ; CHECK: %[[a3:[0-9]+]] = llvm.alloca %{{[0-9]+}} x i8 {alignment = 1 : i64} : (i32) -> !llvm.ptr %1 = alloca i8 ; CHECK: llvm.invoke @foo(%[[a3]]) to ^bb2 unwind ^bb1 : (!llvm.ptr) -> () invoke void @foo(i8* %1) to label %4 unwind label %2 ; CHECK: ^bb1: ; CHECK: %{{[0-9]+}} = llvm.landingpad (catch %{{[0-9]+}} : !llvm.ptr>) (catch %[[a1]] : !llvm.ptr) (filter %{{[0-9]+}} : !llvm.array<1 x i8>) : !llvm.struct<(ptr, i32)> %3 = landingpad { i8*, i32 } catch i8** @_ZTIi catch i8* bitcast (i8*** @_ZTIii to i8*) ; FIXME: Change filter to a constant array once they are handled. ; Currently, even though it parses this, LLVM module is broken filter [1 x i8] [i8 1] resume { i8*, i32 } %3 ; CHECK: ^bb2: ; CHECK: llvm.return %{{[0-9]+}} : i32 ret i32 1 ; CHECK: ^bb3: ; CHECK: %{{[0-9]+}} = llvm.invoke @bar(%[[a3]]) to ^bb2 unwind ^bb1 : (!llvm.ptr) -> !llvm.ptr %6 = invoke i8* @bar(i8* %1) to label %4 unwind label %2 ; CHECK: ^bb4: ; CHECK: llvm.return %{{[0-9]+}} : i32 ret i32 0 } ; CHECK-LABEL: @hasGCFunction ; CHECK-SAME: garbageCollector = "statepoint-example" define void @hasGCFunction() gc "statepoint-example" { ret void } ;CHECK-LABEL: @useFreezeOp define i32 @useFreezeOp(i32 %x) { ;CHECK: %{{[0-9]+}} = llvm.freeze %{{[0-9a-z]+}} : i32 %1 = freeze i32 %x %2 = add i8 10, 10 ;CHECK: %{{[0-9]+}} = llvm.freeze %{{[0-9]+}} : i8 %3 = freeze i8 %2 %poison = add nsw i1 0, undef ret i32 0 } ;CHECK-LABEL: @useFenceInst define i32 @useFenceInst() { ;CHECK: llvm.fence syncscope("agent") seq_cst fence syncscope("agent") seq_cst ;CHECK: llvm.fence release fence release ;CHECK: llvm.fence seq_cst fence syncscope("") seq_cst ret i32 0 } ; Switch instruction declare void @g(i32) ; CHECK-LABEL: llvm.func @simple_switch(%arg0: i32) { define void @simple_switch(i32 %val) { ; CHECK: %[[C0:.+]] = llvm.mlir.constant(11 : i32) : i32 ; CHECK: %[[C1:.+]] = llvm.mlir.constant(87 : i32) : i32 ; CHECK: %[[C2:.+]] = llvm.mlir.constant(78 : i32) : i32 ; CHECK: %[[C3:.+]] = llvm.mlir.constant(94 : i32) : i32 ; CHECK: %[[C4:.+]] = llvm.mlir.constant(1 : i32) : i32 ; CHECK: llvm.switch %arg0 : i32, ^[[BB5:.+]] [ ; CHECK: 0: ^[[BB1:.+]], ; CHECK: 9: ^[[BB2:.+]], ; CHECK: 994: ^[[BB3:.+]], ; CHECK: 1154: ^[[BB4:.+]] ; CHECK: ] switch i32 %val, label %def [ i32 0, label %one i32 9, label %two i32 994, label %three i32 1154, label %four ] ; CHECK: ^[[BB1]]: ; CHECK: llvm.call @g(%[[C4]]) : (i32) -> () ; CHECK: llvm.return one: call void @g(i32 1) ret void ; CHECK: ^[[BB2]]: ; CHECK: llvm.call @g(%[[C3]]) : (i32) -> () ; CHECK: llvm.return two: call void @g(i32 94) ret void ; CHECK: ^[[BB3]]: ; CHECK: llvm.call @g(%[[C2]]) : (i32) -> () ; CHECK: llvm.return three: call void @g(i32 78) ret void ; CHECK: ^[[BB4]]: ; CHECK: llvm.call @g(%[[C1]]) : (i32) -> () ; CHECK: llvm.return four: call void @g(i32 87) ret void ; CHECK: ^[[BB5]]: ; CHECK: llvm.call @g(%[[C0]]) : (i32) -> () ; CHECK: llvm.return def: call void @g(i32 11) ret void } ; CHECK-LABEL: llvm.func @switch_args(%arg0: i32) { define void @switch_args(i32 %val) { ; CHECK: %[[C0:.+]] = llvm.mlir.constant(44 : i32) : i32 ; CHECK: %[[C1:.+]] = llvm.mlir.constant(34 : i32) : i32 ; CHECK: %[[C2:.+]] = llvm.mlir.constant(33 : i32) : i32 %pred = icmp ult i32 %val, 87 br i1 %pred, label %bbs, label %bb1 bb1: %vx = add i32 %val, 22 %pred2 = icmp ult i32 %val, 94 br i1 %pred2, label %bb2, label %bb3 bb2: %vx0 = add i32 %val, 23 br label %one bb3: br label %def ; CHECK: %[[V1:.+]] = llvm.add %arg0, %[[C2]] : i32 ; CHECK: %[[V2:.+]] = llvm.add %arg0, %[[C1]] : i32 ; CHECK: %[[V3:.+]] = llvm.add %arg0, %[[C0]] : i32 ; CHECK: llvm.switch %arg0 : i32, ^[[BBD:.+]](%[[V3]] : i32) [ ; CHECK: 0: ^[[BB1:.+]](%[[V1]], %[[V2]] : i32, i32) ; CHECK: ] bbs: %vy = add i32 %val, 33 %vy0 = add i32 %val, 34 %vz = add i32 %val, 44 switch i32 %val, label %def [ i32 0, label %one ] ; CHECK: ^[[BB1]](%[[BA0:.+]]: i32, %[[BA1:.+]]: i32): one: ; pred: bb2, bbs %v0 = phi i32 [%vx, %bb2], [%vy, %bbs] %v1 = phi i32 [%vx0, %bb2], [%vy0, %bbs] ; CHECK: llvm.add %[[BA0]], %[[BA1]] : i32 %vf = add i32 %v0, %v1 call void @g(i32 %vf) ret void ; CHECK: ^[[BBD]](%[[BA2:.+]]: i32): def: ; pred: bb3, bbs %v2 = phi i32 [%vx, %bb3], [%vz, %bbs] ; CHECK: llvm.call @g(%[[BA2]]) call void @g(i32 %v2) ret void } ; Insert/ExtractValue ; CHECK-LABEL: llvm.func @insert_extract_value_struct define float @insert_extract_value_struct({{i32},{float, double}}* %p) { ; CHECK: %[[C0:.+]] = llvm.mlir.constant(2.000000e+00 : f64) ; CHECK: %[[VT:.+]] = llvm.load %{{.+}} %t = load {{i32},{float, double}}, {{i32},{float, double}}* %p ; CHECK: %[[EV:.+]] = llvm.extractvalue %[[VT]][1 : i32, 0 : i32] : ; CHECK-SAME: !llvm.struct<(struct<(i32)>, struct<(f32, f64)>)> %s = extractvalue {{i32},{float, double}} %t, 1, 0 ; CHECK: %[[IV:.+]] = llvm.insertvalue %[[C0]], %[[VT]][1 : i32, 1 : i32] : ; CHECK-SAME: !llvm.struct<(struct<(i32)>, struct<(f32, f64)>)> %r = insertvalue {{i32},{float, double}} %t, double 2.0, 1, 1 ; CHECK: llvm.store %[[IV]], %{{.+}} store {{i32},{float, double}} %r, {{i32},{float, double}}* %p ; CHECK: llvm.return %[[EV]] ret float %s } ; CHECK-LABEL: llvm.func @insert_extract_value_array define void @insert_extract_value_array([4 x [4 x i8]] %x1) { ; CHECK: %[[C0:.+]] = llvm.mlir.constant(0 : i8) ; CHECK: llvm.insertvalue %[[C0]], %{{.+}}[0 : i32, 0 : i32] : !llvm.array<4 x array<4 x i8>> %res1 = insertvalue [4 x [4 x i8 ]] %x1, i8 0, 0, 0 ; CHECK: llvm.extractvalue %{{.+}}[1 : i32] : !llvm.array<4 x array<4 x i8>> %res2 = extractvalue [4 x [4 x i8 ]] %x1, 1 ; CHECK: llvm.extractvalue %{{.+}}[0 : i32, 1 : i32] : !llvm.array<4 x array<4 x i8>> %res3 = extractvalue [4 x [4 x i8 ]] %x1, 0, 1 ret void } ; Shufflevector ; CHECK-LABEL: llvm.func @shuffle_vec define <4 x half> @shuffle_vec(<4 x half>* %arg0, <4 x half>* %arg1) { ; CHECK: %[[V0:.+]] = llvm.load %{{.+}} : !llvm.ptr> %val0 = load <4 x half>, <4 x half>* %arg0 ; CHECK: %[[V1:.+]] = llvm.load %{{.+}} : !llvm.ptr> %val1 = load <4 x half>, <4 x half>* %arg1 ; CHECK: llvm.shufflevector %[[V0]], %[[V1]] [2 : i32, 3 : i32, -1 : i32, -1 : i32] : vector<4xf16>, vector<4xf16> %shuffle = shufflevector <4 x half> %val0, <4 x half> %val1, <4 x i32> ret <4 x half> %shuffle } ; ExtractElement ; CHECK-LABEL: llvm.func @extract_element define half @extract_element(<4 x half>* %vec, i32 %idx) { ; CHECK: %[[V0:.+]] = llvm.load %{{.+}} : !llvm.ptr> %val0 = load <4 x half>, <4 x half>* %vec ; CHECK: %[[V1:.+]] = llvm.extractelement %[[V0]][%{{.+}} : i32] : vector<4xf16> %r = extractelement <4 x half> %val0, i32 %idx ; CHECK: llvm.return %[[V1]] ret half %r } ; InsertElement ; CHECK-LABEL: llvm.func @insert_element define <4 x half> @insert_element(<4 x half>* %vec, half %v, i32 %idx) { ; CHECK: %[[V0:.+]] = llvm.load %{{.+}} : !llvm.ptr> %val0 = load <4 x half>, <4 x half>* %vec ; CHECK: %[[V1:.+]] = llvm.insertelement %{{.+}}, %[[V0]][%{{.+}} : i32] : vector<4xf16> %r = insertelement <4 x half> %val0, half %v, i32 %idx ; CHECK: llvm.return %[[V1]] ret <4 x half> %r } ; Select ; CHECK-LABEL: llvm.func @select_inst define void @select_inst(i32 %arg0, i32 %arg1, i1 %pred) { ; CHECK: %{{.+}} = llvm.select %{{.+}}, %{{.+}}, %{{.+}} : i1, i32 %1 = select i1 %pred, i32 %arg0, i32 %arg1 ret void } ; Unreachable ; CHECK-LABEL: llvm.func @unreachable_inst define void @unreachable_inst() { ; CHECK: llvm.unreachable unreachable } ; Varadic function definition %struct.va_list = type { i8* } declare void @llvm.va_start(i8*) declare void @llvm.va_copy(i8*, i8*) declare void @llvm.va_end(i8*) ; CHECK-LABEL: llvm.func @variadic_function define void @variadic_function(i32 %X, ...) { ; CHECK: %[[ALLOCA0:.+]] = llvm.alloca %{{.*}} x !llvm.struct<"struct.va_list", (ptr)> {{.*}} : (i32) -> !llvm.ptr)>> %ap = alloca %struct.va_list ; CHECK: %[[CAST0:.+]] = llvm.bitcast %[[ALLOCA0]] : !llvm.ptr)>> to !llvm.ptr %ap2 = bitcast %struct.va_list* %ap to i8* ; CHECK: llvm.intr.vastart %[[CAST0]] call void @llvm.va_start(i8* %ap2) ; CHECK: %[[ALLOCA1:.+]] = llvm.alloca %{{.*}} x !llvm.ptr {{.*}} : (i32) -> !llvm.ptr> %aq = alloca i8* ; CHECK: %[[CAST1:.+]] = llvm.bitcast %[[ALLOCA1]] : !llvm.ptr> to !llvm.ptr %aq2 = bitcast i8** %aq to i8* ; CHECK: llvm.intr.vacopy %[[CAST0]] to %[[CAST1]] call void @llvm.va_copy(i8* %aq2, i8* %ap2) ; CHECK: llvm.intr.vaend %[[CAST1]] call void @llvm.va_end(i8* %aq2) ; CHECK: llvm.intr.vaend %[[CAST0]] call void @llvm.va_end(i8* %ap2) ; CHECK: llvm.return ret void }