# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext \ # RUN: %PYTHON %s | FileCheck %s import ctypes import numpy as np import os import sys from mlir import ir from mlir import runtime as rt from mlir.dialects import sparse_tensor as st from mlir.dialects import builtin from mlir.dialects import func from mlir.dialects.linalg.opdsl import lang as dsl _SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__)) sys.path.append(_SCRIPT_PATH) from tools import sparse_compiler @dsl.linalg_structured_op def matmul_dsl( A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K), B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N), C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True)): C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n] def build_SpMM(attr: st.EncodingAttr): """Build SpMM kernel. This method generates a linalg op with for matrix multiplication using just the Python API. Effectively, a generic linalg op is constructed that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A. """ module = ir.Module.create() f64 = ir.F64Type.get() a = ir.RankedTensorType.get([3, 4], f64, attr) b = ir.RankedTensorType.get([4, 2], f64) c = ir.RankedTensorType.get([3, 2], f64) arguments = [a, b, c] with ir.InsertionPoint(module.body): @func.FuncOp.from_py_func(*arguments) def spMxM(*args): return matmul_dsl(args[0], args[1], outs=[args[2]]) return module def boilerplate(attr: st.EncodingAttr): """Returns boilerplate main method. This method sets up a boilerplate main method that takes three tensors (a, b, c), converts the first tensor a into s sparse tensor, and then calls the sparse kernel for matrix multiplication. For convenience, this part is purely done as string input. """ return f""" func.func @main(%ad: tensor<3x4xf64>, %b: tensor<4x2xf64>, %c: tensor<3x2xf64>) -> tensor<3x2xf64> attributes {{ llvm.emit_c_interface }} {{ %a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, {attr}> %0 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>, tensor<4x2xf64>, tensor<3x2xf64>) -> tensor<3x2xf64> return %0 : tensor<3x2xf64> }} """ def build_compile_and_run_SpMM(attr: st.EncodingAttr, compiler): # Build. module = build_SpMM(attr) func = str(module.operation.regions[0].blocks[0].operations[0].operation) module = ir.Module.parse(func + boilerplate(attr)) # Compile. engine = compiler.compile_and_jit(module) # Set up numpy input and buffer for output. a = np.array( [[1.1, 0.0, 0.0, 1.4], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.3, 0.0]], np.float64) b = np.array([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0]], np.float64) c = np.zeros((3, 2), np.float64) mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a))) mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b))) mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c))) # Allocate a MemRefDescriptor to receive the output tensor. # The buffer itself is allocated inside the MLIR code generation. ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)() mem_out = ctypes.pointer(ctypes.pointer(ref_out)) # Invoke the kernel and get numpy output. # Built-in bufferization uses in-out buffers. # TODO: replace with inplace comprehensive bufferization. engine.invoke('main', mem_out, mem_a, mem_b, mem_c) # Sanity check on computed result. expected = np.matmul(a, b); c = rt.ranked_memref_to_numpy(mem_out[0]) if np.allclose(c, expected): pass else: quit(f'FAILURE') def main(): support_lib = os.getenv('SUPPORT_LIB') assert support_lib is not None, 'SUPPORT_LIB is undefined' if not os.path.exists(support_lib): raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib) # CHECK-LABEL: TEST: testSpMM print('\nTEST: testSpMM') with ir.Context() as ctx, ir.Location.unknown(): count = 0 # Loop over various ways to compile and annotate the SpMM kernel with # a *single* sparse tensor. Note that we deliberate do not exhaustively # search the full state space to reduce runtime of the test. It is # straightforward to adapt the code below to explore more combinations. par = 0 vec = 0 vl = 1 e = False opt = (f'parallelization-strategy={par} ' f'vectorization-strategy={vec} ' f'vl={vl} enable-simd-index32={e}') levels = [[st.DimLevelType.dense, st.DimLevelType.dense], [st.DimLevelType.dense, st.DimLevelType.compressed], [st.DimLevelType.compressed, st.DimLevelType.dense], [st.DimLevelType.compressed, st.DimLevelType.compressed]] orderings = [ ir.AffineMap.get_permutation([0, 1]), ir.AffineMap.get_permutation([1, 0]) ] bitwidths = [0] compiler = sparse_compiler.SparseCompiler( options=opt, opt_level=0, shared_libs=[support_lib]) for level in levels: for ordering in orderings: for pwidth in bitwidths: for iwidth in bitwidths: attr = st.EncodingAttr.get(level, ordering, pwidth, iwidth) build_compile_and_run_SpMM(attr, compiler) count = count + 1 # CHECK: Passed 8 tests print('Passed ', count, 'tests') if __name__ == '__main__': main()