// RUN: mlir-opt %s \ // RUN: --sparsification --sparse-tensor-conversion \ // RUN: --convert-vector-to-scf --convert-scf-to-std \ // RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ // RUN: --std-bufferize --finalizing-bufferize --lower-affine \ // RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \ // RUN: TENSOR0="%mlir_integration_test_dir/data/wide.mtx" \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s // // Do the same run, but now with SIMDization as well. This should not change the outcome. // // RUN: mlir-opt %s \ // RUN: --sparsification="vectorization-strategy=2 vl=2" --sparse-tensor-conversion \ // RUN: --convert-vector-to-scf --convert-scf-to-std \ // RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ // RUN: --std-bufferize --finalizing-bufferize --lower-affine \ // RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \ // RUN: TENSOR0="%mlir_integration_test_dir/data/wide.mtx" \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s !Filename = type !llvm.ptr #SparseMatrix = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }> #spmm = { indexing_maps = [ affine_map<(i,j,k) -> (i,k)>, // A affine_map<(i,j,k) -> (k,j)>, // B affine_map<(i,j,k) -> (i,j)> // X (out) ], iterator_types = ["parallel", "parallel", "reduction"], doc = "X(i,j) += A(i,k) * B(k,j)" } // // Integration test that lowers a kernel annotated as sparse to // actual sparse code, initializes a matching sparse storage scheme // from file, and runs the resulting code with the JIT compiler. // module { // // A kernel that multiplies a sparse matrix A with a dense matrix B // into a dense matrix X. // func @kernel_spmm(%arga: tensor, %argb: tensor, %argx: tensor {linalg.inplaceable = true}) -> tensor { %0 = linalg.generic #spmm ins(%arga, %argb: tensor, tensor) outs(%argx: tensor) { ^bb(%a: f64, %b: f64, %x: f64): %0 = arith.mulf %a, %b : f64 %1 = arith.addf %x, %0 : f64 linalg.yield %1 : f64 } -> tensor return %0 : tensor } func private @getTensorFilename(index) -> (!Filename) // // Main driver that reads matrix from file and calls the sparse kernel. // func @entry() { %i0 = arith.constant 0.0 : f64 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c4 = arith.constant 4 : index %c256 = arith.constant 256 : index // Read the sparse matrix from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) %a = sparse_tensor.new %fileName : !Filename to tensor // Initialize dense vectors. %bdata = memref.alloc(%c256, %c4) : memref %xdata = memref.alloc(%c4, %c4) : memref scf.for %i = %c0 to %c256 step %c1 { scf.for %j = %c0 to %c4 step %c1 { %k0 = arith.muli %i, %c4 : index %k1 = arith.addi %j, %k0 : index %k2 = arith.index_cast %k1 : index to i32 %k = arith.sitofp %k2 : i32 to f64 memref.store %k, %bdata[%i, %j] : memref } } scf.for %i = %c0 to %c4 step %c1 { scf.for %j = %c0 to %c4 step %c1 { memref.store %i0, %xdata[%i, %j] : memref } } %b = bufferization.to_tensor %bdata : memref %x = bufferization.to_tensor %xdata : memref // Call kernel. %0 = call @kernel_spmm(%a, %b, %x) : (tensor, tensor, tensor) -> tensor // Print the result for verification. // // CHECK: ( ( 3548, 3550, 3552, 3554 ), ( 6052, 6053, 6054, 6055 ), ( -56, -63, -70, -77 ), ( -13704, -13709, -13714, -13719 ) ) // %m = bufferization.to_memref %0 : memref %v = vector.transfer_read %m[%c0, %c0], %i0: memref, vector<4x4xf64> vector.print %v : vector<4x4xf64> // Release the resources. memref.dealloc %bdata : memref memref.dealloc %xdata : memref sparse_tensor.release %a : tensor return } }