// RUN: mlir-opt %s \ // RUN: --sparsification --sparse-tensor-conversion \ // RUN: --convert-vector-to-scf --convert-scf-to-std \ // RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ // RUN: --std-bufferize --finalizing-bufferize --lower-affine \ // RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \ // RUN: TENSOR0="%mlir_integration_test_dir/data/test.mtx" \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s // // Do the same run, but now with SIMDization as well. This should not change the outcome. // // RUN: mlir-opt %s \ // RUN: --sparsification="vectorization-strategy=2 vl=4" --sparse-tensor-conversion \ // RUN: --convert-vector-to-scf --convert-scf-to-std \ // RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ // RUN: --std-bufferize --finalizing-bufferize --lower-affine \ // RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \ // RUN: TENSOR0="%mlir_integration_test_dir/data/test.mtx" \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s !Filename = type !llvm.ptr #DCSR = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(i,j) -> (i,j)> }> #eltwise_mult = { indexing_maps = [ affine_map<(i,j) -> (i,j)> // X (out) ], iterator_types = ["parallel", "parallel"], doc = "X(i,j) *= X(i,j)" } // // Integration test that lowers a kernel annotated as sparse to // actual sparse code, initializes a matching sparse storage scheme // from file, and runs the resulting code with the JIT compiler. // module { // // A kernel that multiplies a sparse matrix A with itself // in an element-wise fashion. In this operation, we have // a sparse tensor as output, but although the values of the // sparse tensor change, its nonzero structure remains the same. // func @kernel_eltwise_mult(%argx: tensor {linalg.inplaceable = true}) -> tensor { %0 = linalg.generic #eltwise_mult outs(%argx: tensor) { ^bb(%x: f64): %0 = arith.mulf %x, %x : f64 linalg.yield %0 : f64 } -> tensor return %0 : tensor } func private @getTensorFilename(index) -> (!Filename) // // Main driver that reads matrix from file and calls the sparse kernel. // func @entry() { %d0 = arith.constant 0.0 : f64 %c0 = arith.constant 0 : index // Read the sparse matrix from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) %x = sparse_tensor.new %fileName : !Filename to tensor // Call kernel. %0 = call @kernel_eltwise_mult(%x) : (tensor) -> tensor // Print the result for verification. // // CHECK: ( 1, 1.96, 4, 6.25, 9, 16.81, 16, 27.04, 25 ) // %m = sparse_tensor.values %0 : tensor to memref %v = vector.transfer_read %m[%c0], %d0: memref, vector<9xf64> vector.print %v : vector<9xf64> // Release the resources. sparse_tensor.release %x : tensor return } }