// RUN: mlir-opt %s --sparse-compiler | \ // RUN: mlir-cpu-runner -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s #SparseVector = #sparse_tensor.encoding<{ dimLevelType = ["compressed"] }> #SparseMatrix = #sparse_tensor.encoding<{ dimLevelType = ["compressed", "compressed"] }> #trait_1d = { indexing_maps = [ affine_map<(i) -> (i)>, // a affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"], doc = "X(i) = a(i) op i" } #trait_2d = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A affine_map<(i,j) -> (i,j)> // X (out) ], iterator_types = ["parallel", "parallel"], doc = "X(i,j) = A(i,j) op i op j" } // // Test with indices. Note that a lot of results are actually // dense, but this is done to stress test all the operations. // module { // // Kernel that uses index in the index notation (conjunction). // func.func @sparse_index_1d_conj(%arga: tensor<8xi64, #SparseVector>) -> tensor<8xi64, #SparseVector> { %init = bufferization.alloc_tensor() : tensor<8xi64, #SparseVector> %r = linalg.generic #trait_1d ins(%arga: tensor<8xi64, #SparseVector>) outs(%init: tensor<8xi64, #SparseVector>) { ^bb(%a: i64, %x: i64): %i = linalg.index 0 : index %ii = arith.index_cast %i : index to i64 %m1 = arith.muli %a, %ii : i64 linalg.yield %m1 : i64 } -> tensor<8xi64, #SparseVector> return %r : tensor<8xi64, #SparseVector> } // // Kernel that uses index in the index notation (disjunction). // func.func @sparse_index_1d_disj(%arga: tensor<8xi64, #SparseVector>) -> tensor<8xi64, #SparseVector> { %init = bufferization.alloc_tensor() : tensor<8xi64, #SparseVector> %r = linalg.generic #trait_1d ins(%arga: tensor<8xi64, #SparseVector>) outs(%init: tensor<8xi64, #SparseVector>) { ^bb(%a: i64, %x: i64): %i = linalg.index 0 : index %ii = arith.index_cast %i : index to i64 %m1 = arith.addi %a, %ii : i64 linalg.yield %m1 : i64 } -> tensor<8xi64, #SparseVector> return %r : tensor<8xi64, #SparseVector> } // // Kernel that uses indices in the index notation (conjunction). // func.func @sparse_index_2d_conj(%arga: tensor<3x4xi64, #SparseMatrix>) -> tensor<3x4xi64, #SparseMatrix> { %init = bufferization.alloc_tensor() : tensor<3x4xi64, #SparseMatrix> %r = linalg.generic #trait_2d ins(%arga: tensor<3x4xi64, #SparseMatrix>) outs(%init: tensor<3x4xi64, #SparseMatrix>) { ^bb(%a: i64, %x: i64): %i = linalg.index 0 : index %j = linalg.index 1 : index %ii = arith.index_cast %i : index to i64 %jj = arith.index_cast %j : index to i64 %m1 = arith.muli %ii, %a : i64 %m2 = arith.muli %jj, %m1 : i64 linalg.yield %m2 : i64 } -> tensor<3x4xi64, #SparseMatrix> return %r : tensor<3x4xi64, #SparseMatrix> } // // Kernel that uses indices in the index notation (disjunction). // func.func @sparse_index_2d_disj(%arga: tensor<3x4xi64, #SparseMatrix>) -> tensor<3x4xi64, #SparseMatrix> { %init = bufferization.alloc_tensor() : tensor<3x4xi64, #SparseMatrix> %r = linalg.generic #trait_2d ins(%arga: tensor<3x4xi64, #SparseMatrix>) outs(%init: tensor<3x4xi64, #SparseMatrix>) { ^bb(%a: i64, %x: i64): %i = linalg.index 0 : index %j = linalg.index 1 : index %ii = arith.index_cast %i : index to i64 %jj = arith.index_cast %j : index to i64 %m1 = arith.addi %ii, %a : i64 %m2 = arith.addi %jj, %m1 : i64 linalg.yield %m2 : i64 } -> tensor<3x4xi64, #SparseMatrix> return %r : tensor<3x4xi64, #SparseMatrix> } func.func @add_outer_2d(%arg0: tensor<2x3xf32, #SparseMatrix>) -> tensor<2x3xf32, #SparseMatrix> { %0 = bufferization.alloc_tensor() : tensor<2x3xf32, #SparseMatrix> %1 = linalg.generic #trait_2d ins(%arg0 : tensor<2x3xf32, #SparseMatrix>) outs(%0 : tensor<2x3xf32, #SparseMatrix>) { ^bb0(%arg1: f32, %arg2: f32): %2 = linalg.index 0 : index %3 = arith.index_cast %2 : index to i64 %4 = arith.uitofp %3 : i64 to f32 %5 = arith.addf %arg1, %4 : f32 linalg.yield %5 : f32 } -> tensor<2x3xf32, #SparseMatrix> return %1 : tensor<2x3xf32, #SparseMatrix> } // // Main driver. // func.func @entry() { %c0 = arith.constant 0 : index %du = arith.constant -1 : i64 %df = arith.constant -1.0 : f32 // Setup input sparse vector. %v1 = arith.constant sparse<[[2], [4]], [ 10, 20]> : tensor<8xi64> %sv = sparse_tensor.convert %v1 : tensor<8xi64> to tensor<8xi64, #SparseVector> // Setup input "sparse" vector. %v2 = arith.constant dense<[ 1, 2, 4, 8, 16, 32, 64, 128 ]> : tensor<8xi64> %dv = sparse_tensor.convert %v2 : tensor<8xi64> to tensor<8xi64, #SparseVector> // Setup input sparse matrix. %m1 = arith.constant sparse<[[1,1], [2,3]], [10, 20]> : tensor<3x4xi64> %sm = sparse_tensor.convert %m1 : tensor<3x4xi64> to tensor<3x4xi64, #SparseMatrix> // Setup input "sparse" matrix. %m2 = arith.constant dense <[ [ 1, 1, 1, 1 ], [ 1, 2, 1, 1 ], [ 1, 1, 3, 4 ] ]> : tensor<3x4xi64> %dm = sparse_tensor.convert %m2 : tensor<3x4xi64> to tensor<3x4xi64, #SparseMatrix> // Setup input sparse f32 matrix. %mf32 = arith.constant sparse<[[0,1], [1,2]], [10.0, 41.0]> : tensor<2x3xf32> %sf32 = sparse_tensor.convert %mf32 : tensor<2x3xf32> to tensor<2x3xf32, #SparseMatrix> // Call the kernels. %0 = call @sparse_index_1d_conj(%sv) : (tensor<8xi64, #SparseVector>) -> tensor<8xi64, #SparseVector> %1 = call @sparse_index_1d_disj(%sv) : (tensor<8xi64, #SparseVector>) -> tensor<8xi64, #SparseVector> %2 = call @sparse_index_1d_conj(%dv) : (tensor<8xi64, #SparseVector>) -> tensor<8xi64, #SparseVector> %3 = call @sparse_index_1d_disj(%dv) : (tensor<8xi64, #SparseVector>) -> tensor<8xi64, #SparseVector> %4 = call @sparse_index_2d_conj(%sm) : (tensor<3x4xi64, #SparseMatrix>) -> tensor<3x4xi64, #SparseMatrix> %5 = call @sparse_index_2d_disj(%sm) : (tensor<3x4xi64, #SparseMatrix>) -> tensor<3x4xi64, #SparseMatrix> %6 = call @sparse_index_2d_conj(%dm) : (tensor<3x4xi64, #SparseMatrix>) -> tensor<3x4xi64, #SparseMatrix> %7 = call @sparse_index_2d_disj(%dm) : (tensor<3x4xi64, #SparseMatrix>) -> tensor<3x4xi64, #SparseMatrix> // // Verify result. // // CHECK: ( 20, 80, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( 0, 1, 12, 3, 24, 5, 6, 7 ) // CHECK-NEXT: ( 0, 2, 8, 24, 64, 160, 384, 896 ) // CHECK-NEXT: ( 1, 3, 6, 11, 20, 37, 70, 135 ) // CHECK-NEXT: ( 10, 120, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( 0, 1, 2, 3, 1, 12, 3, 4, 2, 3, 4, 25 ) // CHECK-NEXT: ( 0, 0, 0, 0, 0, 2, 2, 3, 0, 2, 12, 24 ) // CHECK-NEXT: ( 1, 2, 3, 4, 2, 4, 4, 5, 3, 4, 7, 9 ) // %8 = sparse_tensor.values %0 : tensor<8xi64, #SparseVector> to memref %9 = sparse_tensor.values %1 : tensor<8xi64, #SparseVector> to memref %10 = sparse_tensor.values %2 : tensor<8xi64, #SparseVector> to memref %11 = sparse_tensor.values %3 : tensor<8xi64, #SparseVector> to memref %12 = sparse_tensor.values %4 : tensor<3x4xi64, #SparseMatrix> to memref %13 = sparse_tensor.values %5 : tensor<3x4xi64, #SparseMatrix> to memref %14 = sparse_tensor.values %6 : tensor<3x4xi64, #SparseMatrix> to memref %15 = sparse_tensor.values %7 : tensor<3x4xi64, #SparseMatrix> to memref %16 = vector.transfer_read %8[%c0], %du: memref, vector<8xi64> %17 = vector.transfer_read %9[%c0], %du: memref, vector<8xi64> %18 = vector.transfer_read %10[%c0], %du: memref, vector<8xi64> %19 = vector.transfer_read %11[%c0], %du: memref, vector<8xi64> %20 = vector.transfer_read %12[%c0], %du: memref, vector<12xi64> %21 = vector.transfer_read %13[%c0], %du: memref, vector<12xi64> %22 = vector.transfer_read %14[%c0], %du: memref, vector<12xi64> %23 = vector.transfer_read %15[%c0], %du: memref, vector<12xi64> vector.print %16 : vector<8xi64> vector.print %17 : vector<8xi64> vector.print %18 : vector<8xi64> vector.print %19 : vector<8xi64> vector.print %20 : vector<12xi64> vector.print %21 : vector<12xi64> vector.print %22 : vector<12xi64> vector.print %23 : vector<12xi64> // Release resources. bufferization.dealloc_tensor %sv : tensor<8xi64, #SparseVector> bufferization.dealloc_tensor %dv : tensor<8xi64, #SparseVector> bufferization.dealloc_tensor %0 : tensor<8xi64, #SparseVector> bufferization.dealloc_tensor %1 : tensor<8xi64, #SparseVector> bufferization.dealloc_tensor %2 : tensor<8xi64, #SparseVector> bufferization.dealloc_tensor %3 : tensor<8xi64, #SparseVector> bufferization.dealloc_tensor %sm : tensor<3x4xi64, #SparseMatrix> bufferization.dealloc_tensor %dm : tensor<3x4xi64, #SparseMatrix> bufferization.dealloc_tensor %4 : tensor<3x4xi64, #SparseMatrix> bufferization.dealloc_tensor %5 : tensor<3x4xi64, #SparseMatrix> bufferization.dealloc_tensor %6 : tensor<3x4xi64, #SparseMatrix> bufferization.dealloc_tensor %7 : tensor<3x4xi64, #SparseMatrix> // // Call the f32 kernel, verify the result, release the resources. // // CHECK-NEXT: ( 0, 10, 0, 1, 1, 42 ) // %100 = call @add_outer_2d(%sf32) : (tensor<2x3xf32, #SparseMatrix>) -> tensor<2x3xf32, #SparseMatrix> %101 = sparse_tensor.values %100 : tensor<2x3xf32, #SparseMatrix> to memref %102 = vector.transfer_read %101[%c0], %df: memref, vector<6xf32> vector.print %102 : vector<6xf32> bufferization.dealloc_tensor %sf32 : tensor<2x3xf32, #SparseMatrix> bufferization.dealloc_tensor %100 : tensor<2x3xf32, #SparseMatrix> return } }