// RUN: mlir-opt %s --sparse-compiler | \ // RUN: mlir-cpu-runner -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s #SparseVector = #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }> module { // // Sparse kernel. // func.func @sparse_dot(%a: tensor<1024xf32, #SparseVector>, %b: tensor<1024xf32, #SparseVector>, %x: tensor) -> tensor { %dot = linalg.dot ins(%a, %b: tensor<1024xf32, #SparseVector>, tensor<1024xf32, #SparseVector>) outs(%x: tensor) -> tensor return %dot : tensor } // // Main driver. // func.func @entry() { // Setup two sparse vectors. %d1 = arith.constant sparse< [ [0], [1], [22], [23], [1022] ], [1.0, 2.0, 3.0, 4.0, 5.0] > : tensor<1024xf32> %d2 = arith.constant sparse< [ [22], [1022], [1023] ], [6.0, 7.0, 8.0] > : tensor<1024xf32> %s1 = sparse_tensor.convert %d1 : tensor<1024xf32> to tensor<1024xf32, #SparseVector> %s2 = sparse_tensor.convert %d2 : tensor<1024xf32> to tensor<1024xf32, #SparseVector> // Call the kernel and verify the output. // // CHECK: 53 // %t = bufferization.alloc_tensor() : tensor %z = arith.constant 0.0 : f32 %x = tensor.insert %z into %t[] : tensor %0 = call @sparse_dot(%s1, %s2, %x) : (tensor<1024xf32, #SparseVector>, tensor<1024xf32, #SparseVector>, tensor) -> tensor %1 = tensor.extract %0[] : tensor vector.print %1 : f32 // Release the resources. bufferization.dealloc_tensor %s1 : tensor<1024xf32, #SparseVector> bufferization.dealloc_tensor %s2 : tensor<1024xf32, #SparseVector> return } }