// RUN: mlir-opt %s --sparse-compiler | \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s #SparseVector = #sparse_tensor.encoding<{dimLevelType = ["compressed"]}> #DCSR = #sparse_tensor.encoding<{dimLevelType = ["compressed", "compressed"]}> // // Traits for tensor operations. // #trait_vec_scale = { indexing_maps = [ affine_map<(i) -> (i)>, // a (in) affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"] } #trait_vec_op = { indexing_maps = [ affine_map<(i) -> (i)>, // a (in) affine_map<(i) -> (i)>, // b (in) affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"] } #trait_mat_op = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A (in) affine_map<(i,j) -> (i,j)>, // B (in) affine_map<(i,j) -> (i,j)> // X (out) ], iterator_types = ["parallel", "parallel"], doc = "X(i,j) = A(i,j) OP B(i,j)" } module { // Creates a new sparse vector using the minimum values from two input sparse vectors. // When there is no overlap, include the present value in the output. func.func @vector_min(%arga: tensor, %argb: tensor) -> tensor { %c = arith.constant 0 : index %d = tensor.dim %arga, %c : tensor %xv = sparse_tensor.init [%d] : tensor %0 = linalg.generic #trait_vec_op ins(%arga, %argb: tensor, tensor) outs(%xv: tensor) { ^bb(%a: f64, %b: f64, %x: f64): %1 = sparse_tensor.binary %a, %b : f64, f64 to f64 overlap={ ^bb0(%a0: f64, %b0: f64): %cmp = arith.cmpf "olt", %a0, %b0 : f64 %2 = arith.select %cmp, %a0, %b0: f64 sparse_tensor.yield %2 : f64 } left=identity right=identity linalg.yield %1 : f64 } -> tensor return %0 : tensor } // Creates a new sparse vector by multiplying a sparse vector with a dense vector. // When there is no overlap, leave the result empty. func.func @vector_mul(%arga: tensor, %argb: tensor) -> tensor { %c = arith.constant 0 : index %d = tensor.dim %arga, %c : tensor %xv = sparse_tensor.init [%d] : tensor %0 = linalg.generic #trait_vec_op ins(%arga, %argb: tensor, tensor) outs(%xv: tensor) { ^bb(%a: f64, %b: f64, %x: f64): %1 = sparse_tensor.binary %a, %b : f64, f64 to f64 overlap={ ^bb0(%a0: f64, %b0: f64): %ret = arith.mulf %a0, %b0 : f64 sparse_tensor.yield %ret : f64 } left={} right={} linalg.yield %1 : f64 } -> tensor return %0 : tensor } // Take a set difference of two sparse vectors. The result will include only those // sparse elements present in the first, but not the second vector. func.func @vector_setdiff(%arga: tensor, %argb: tensor) -> tensor { %c = arith.constant 0 : index %d = tensor.dim %arga, %c : tensor %xv = sparse_tensor.init [%d] : tensor %0 = linalg.generic #trait_vec_op ins(%arga, %argb: tensor, tensor) outs(%xv: tensor) { ^bb(%a: f64, %b: f64, %x: f64): %1 = sparse_tensor.binary %a, %b : f64, f64 to f64 overlap={} left=identity right={} linalg.yield %1 : f64 } -> tensor return %0 : tensor } // Return the index of each entry func.func @vector_index(%arga: tensor) -> tensor { %c = arith.constant 0 : index %d = tensor.dim %arga, %c : tensor %xv = sparse_tensor.init [%d] : tensor %0 = linalg.generic #trait_vec_scale ins(%arga: tensor) outs(%xv: tensor) { ^bb(%a: f64, %x: i32): %idx = linalg.index 0 : index %1 = sparse_tensor.binary %a, %idx : f64, index to i32 overlap={ ^bb0(%x0: f64, %i: index): %ret = arith.index_cast %i : index to i32 sparse_tensor.yield %ret : i32 } left={} right={} linalg.yield %1 : i32 } -> tensor return %0 : tensor } // Adds two sparse matrices when they intersect. Where they don't intersect, // negate the 2nd argument's values; ignore 1st argument-only values. func.func @matrix_intersect(%arga: tensor, %argb: tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %d0 = tensor.dim %arga, %c0 : tensor %d1 = tensor.dim %arga, %c1 : tensor %xv = sparse_tensor.init [%d0, %d1] : tensor %0 = linalg.generic #trait_mat_op ins(%arga, %argb: tensor, tensor) outs(%xv: tensor) { ^bb(%a: f64, %b: f64, %x: f64): %1 = sparse_tensor.binary %a, %b: f64, f64 to f64 overlap={ ^bb0(%x0: f64, %y0: f64): %ret = arith.addf %x0, %y0 : f64 sparse_tensor.yield %ret : f64 } left={} right={ ^bb0(%x1: f64): %lret = arith.negf %x1 : f64 sparse_tensor.yield %lret : f64 } linalg.yield %1 : f64 } -> tensor return %0 : tensor } // Dumps a sparse vector of type f64. func.func @dump_vec(%arg0: tensor) { // Dump the values array to verify only sparse contents are stored. %c0 = arith.constant 0 : index %d0 = arith.constant -1.0 : f64 %0 = sparse_tensor.values %arg0 : tensor to memref %1 = vector.transfer_read %0[%c0], %d0: memref, vector<16xf64> vector.print %1 : vector<16xf64> // Dump the dense vector to verify structure is correct. %dv = sparse_tensor.convert %arg0 : tensor to tensor %2 = bufferization.to_memref %dv : memref %3 = vector.transfer_read %2[%c0], %d0: memref, vector<32xf64> vector.print %3 : vector<32xf64> memref.dealloc %2 : memref return } // Dumps a sparse vector of type i32. func.func @dump_vec_i32(%arg0: tensor) { // Dump the values array to verify only sparse contents are stored. %c0 = arith.constant 0 : index %d0 = arith.constant -1 : i32 %0 = sparse_tensor.values %arg0 : tensor to memref %1 = vector.transfer_read %0[%c0], %d0: memref, vector<24xi32> vector.print %1 : vector<24xi32> // Dump the dense vector to verify structure is correct. %dv = sparse_tensor.convert %arg0 : tensor to tensor %2 = bufferization.to_memref %dv : memref %3 = vector.transfer_read %2[%c0], %d0: memref, vector<32xi32> vector.print %3 : vector<32xi32> memref.dealloc %2 : memref return } // Dump a sparse matrix. func.func @dump_mat(%arg0: tensor) { %d0 = arith.constant 0.0 : f64 %c0 = arith.constant 0 : index %dm = sparse_tensor.convert %arg0 : tensor to tensor %0 = bufferization.to_memref %dm : memref %1 = vector.transfer_read %0[%c0, %c0], %d0: memref, vector<4x8xf64> vector.print %1 : vector<4x8xf64> memref.dealloc %0 : memref return } // Driver method to call and verify vector kernels. func.func @entry() { %c0 = arith.constant 0 : index // Setup sparse vectors. %v1 = arith.constant sparse< [ [0], [3], [11], [17], [20], [21], [28], [29], [31] ], [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ] > : tensor<32xf64> %v2 = arith.constant sparse< [ [1], [3], [4], [10], [16], [18], [21], [28], [29], [31] ], [11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0 ] > : tensor<32xf64> %v3 = arith.constant dense< [0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 0., 1.] > : tensor<32xf64> %sv1 = sparse_tensor.convert %v1 : tensor<32xf64> to tensor %sv2 = sparse_tensor.convert %v2 : tensor<32xf64> to tensor %dv3 = tensor.cast %v3 : tensor<32xf64> to tensor // Setup sparse matrices. %m1 = arith.constant sparse< [ [0,0], [0,1], [1,7], [2,2], [2,4], [2,7], [3,0], [3,2], [3,3] ], [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ] > : tensor<4x8xf64> %m2 = arith.constant sparse< [ [0,0], [0,7], [1,0], [1,6], [2,1], [2,7] ], [6.0, 5.0, 4.0, 3.0, 2.0, 1.0 ] > : tensor<4x8xf64> %sm1 = sparse_tensor.convert %m1 : tensor<4x8xf64> to tensor %sm2 = sparse_tensor.convert %m2 : tensor<4x8xf64> to tensor // Call sparse vector kernels. %0 = call @vector_min(%sv1, %sv2) : (tensor, tensor) -> tensor %1 = call @vector_mul(%sv1, %dv3) : (tensor, tensor) -> tensor %2 = call @vector_setdiff(%sv1, %sv2) : (tensor, tensor) -> tensor %3 = call @vector_index(%sv1) : (tensor) -> tensor // Call sparse matrix kernels. %5 = call @matrix_intersect(%sm1, %sm2) : (tensor, tensor) -> tensor // // Verify the results. // // CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 ) // CHECK-NEXT: ( 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( 0, 11, 0, 12, 13, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 15, 0, 16, 0, 0, 17, 0, 0, 0, 0, 0, 0, 18, 19, 0, 20 ) // CHECK-NEXT: ( 1, 11, 2, 13, 14, 3, 15, 4, 16, 5, 6, 7, 8, 9, -1, -1 ) // CHECK-NEXT: ( 1, 11, 0, 2, 13, 0, 0, 0, 0, 0, 14, 3, 0, 0, 0, 0, 15, 4, 16, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 ) // CHECK-NEXT: ( 0, 6, 3, 28, 0, 6, 56, 72, 9, -1, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 28, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 56, 72, 0, 9 ) // CHECK-NEXT: ( 1, 3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) // CHECK-NEXT: ( 0, 3, 11, 17, 20, 21, 28, 29, 31, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 17, 0, 0, 20, 21, 0, 0, 0, 0, 0, 0, 28, 29, 0, 31 ) // CHECK-NEXT: ( ( 7, 0, 0, 0, 0, 0, 0, -5 ), ( -4, 0, 0, 0, 0, 0, -3, 0 ), ( 0, -2, 0, 0, 0, 0, 0, 7 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ) ) // call @dump_vec(%sv1) : (tensor) -> () call @dump_vec(%sv2) : (tensor) -> () call @dump_vec(%0) : (tensor) -> () call @dump_vec(%1) : (tensor) -> () call @dump_vec(%2) : (tensor) -> () call @dump_vec_i32(%3) : (tensor) -> () call @dump_mat(%5) : (tensor) -> () // Release the resources. sparse_tensor.release %sv1 : tensor sparse_tensor.release %sv2 : tensor sparse_tensor.release %sm1 : tensor sparse_tensor.release %sm2 : tensor sparse_tensor.release %0 : tensor sparse_tensor.release %1 : tensor sparse_tensor.release %2 : tensor sparse_tensor.release %3 : tensor sparse_tensor.release %5 : tensor return } }