// RUN: mlir-opt %s --sparse-compiler | \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s #SparseVector = #sparse_tensor.encoding<{dimLevelType = ["compressed"]}> #DCSR = #sparse_tensor.encoding<{dimLevelType = ["compressed", "compressed"]}> // // Traits for tensor operations. // #trait_vec_scale = { indexing_maps = [ affine_map<(i) -> (i)>, // a (in) affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"] } #trait_vec_op = { indexing_maps = [ affine_map<(i) -> (i)>, // a (in) affine_map<(i) -> (i)>, // b (in) affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"] } #trait_mat_op = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A (in) affine_map<(i,j) -> (i,j)>, // B (in) affine_map<(i,j) -> (i,j)> // X (out) ], iterator_types = ["parallel", "parallel"], doc = "X(i,j) = A(i,j) OP B(i,j)" } // // Contains test cases for the sparse_tensor.binary operator (different cases when left/right/overlap // is empty/identity, etc). // module { // Creates a new sparse vector using the minimum values from two input sparse vectors. // When there is no overlap, include the present value in the output. func.func @vector_min(%arga: tensor, %argb: tensor) -> tensor { %c = arith.constant 0 : index %d = tensor.dim %arga, %c : tensor %xv = bufferization.alloc_tensor(%d) : tensor %0 = linalg.generic #trait_vec_op ins(%arga, %argb: tensor, tensor) outs(%xv: tensor) { ^bb(%a: f64, %b: f64, %x: f64): %1 = sparse_tensor.binary %a, %b : f64, f64 to f64 overlap={ ^bb0(%a0: f64, %b0: f64): %cmp = arith.cmpf "olt", %a0, %b0 : f64 %2 = arith.select %cmp, %a0, %b0: f64 sparse_tensor.yield %2 : f64 } left=identity right=identity linalg.yield %1 : f64 } -> tensor return %0 : tensor } // Creates a new sparse vector by multiplying a sparse vector with a dense vector. // When there is no overlap, leave the result empty. func.func @vector_mul(%arga: tensor, %argb: tensor) -> tensor { %c = arith.constant 0 : index %d = tensor.dim %arga, %c : tensor %xv = bufferization.alloc_tensor(%d) : tensor %0 = linalg.generic #trait_vec_op ins(%arga, %argb: tensor, tensor) outs(%xv: tensor) { ^bb(%a: f64, %b: f64, %x: f64): %1 = sparse_tensor.binary %a, %b : f64, f64 to f64 overlap={ ^bb0(%a0: f64, %b0: f64): %ret = arith.mulf %a0, %b0 : f64 sparse_tensor.yield %ret : f64 } left={} right={} linalg.yield %1 : f64 } -> tensor return %0 : tensor } // Take a set difference of two sparse vectors. The result will include only those // sparse elements present in the first, but not the second vector. func.func @vector_setdiff(%arga: tensor, %argb: tensor) -> tensor { %c = arith.constant 0 : index %d = tensor.dim %arga, %c : tensor %xv = bufferization.alloc_tensor(%d) : tensor %0 = linalg.generic #trait_vec_op ins(%arga, %argb: tensor, tensor) outs(%xv: tensor) { ^bb(%a: f64, %b: f64, %x: f64): %1 = sparse_tensor.binary %a, %b : f64, f64 to f64 overlap={} left=identity right={} linalg.yield %1 : f64 } -> tensor return %0 : tensor } // Return the index of each entry func.func @vector_index(%arga: tensor) -> tensor { %c = arith.constant 0 : index %d = tensor.dim %arga, %c : tensor %xv = bufferization.alloc_tensor(%d) : tensor %0 = linalg.generic #trait_vec_scale ins(%arga: tensor) outs(%xv: tensor) { ^bb(%a: f64, %x: i32): %idx = linalg.index 0 : index %1 = sparse_tensor.binary %a, %idx : f64, index to i32 overlap={ ^bb0(%x0: f64, %i: index): %ret = arith.index_cast %i : index to i32 sparse_tensor.yield %ret : i32 } left={} right={} linalg.yield %1 : i32 } -> tensor return %0 : tensor } // Adds two sparse matrices when they intersect. Where they don't intersect, // negate the 2nd argument's values; ignore 1st argument-only values. func.func @matrix_intersect(%arga: tensor, %argb: tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %d0 = tensor.dim %arga, %c0 : tensor %d1 = tensor.dim %arga, %c1 : tensor %xv = bufferization.alloc_tensor(%d0, %d1) : tensor %0 = linalg.generic #trait_mat_op ins(%arga, %argb: tensor, tensor) outs(%xv: tensor) { ^bb(%a: f64, %b: f64, %x: f64): %1 = sparse_tensor.binary %a, %b: f64, f64 to f64 overlap={ ^bb0(%x0: f64, %y0: f64): %ret = arith.addf %x0, %y0 : f64 sparse_tensor.yield %ret : f64 } left={} right={ ^bb0(%x1: f64): %lret = arith.negf %x1 : f64 sparse_tensor.yield %lret : f64 } linalg.yield %1 : f64 } -> tensor return %0 : tensor } // Tensor addition (use semi-ring binary operation). func.func @add_tensor_1(%A: tensor<4x4xf64, #DCSR>, %B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> { %C = bufferization.alloc_tensor() : tensor<4x4xf64, #DCSR> %0 = linalg.generic #trait_mat_op ins(%A, %B: tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) outs(%C: tensor<4x4xf64, #DCSR>) { ^bb0(%a: f64, %b: f64, %c: f64) : %result = sparse_tensor.binary %a, %b : f64, f64 to f64 overlap={ ^bb0(%x: f64, %y: f64): %ret = arith.addf %x, %y : f64 sparse_tensor.yield %ret : f64 } left=identity right=identity linalg.yield %result : f64 } -> tensor<4x4xf64, #DCSR> return %0 : tensor<4x4xf64, #DCSR> } // Same as @add_tensor_1, but use sparse_tensor.yield instead of identity to yield value. func.func @add_tensor_2(%A: tensor<4x4xf64, #DCSR>, %B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> { %C = bufferization.alloc_tensor() : tensor<4x4xf64, #DCSR> %0 = linalg.generic #trait_mat_op ins(%A, %B: tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) outs(%C: tensor<4x4xf64, #DCSR>) { ^bb0(%a: f64, %b: f64, %c: f64) : %result = sparse_tensor.binary %a, %b : f64, f64 to f64 overlap={ ^bb0(%x: f64, %y: f64): %ret = arith.addf %x, %y : f64 sparse_tensor.yield %ret : f64 } left={ ^bb0(%x: f64): sparse_tensor.yield %x : f64 } right={ ^bb0(%y: f64): sparse_tensor.yield %y : f64 } linalg.yield %result : f64 } -> tensor<4x4xf64, #DCSR> return %0 : tensor<4x4xf64, #DCSR> } // Performs triangular add/sub operation (using semi-ring binary op). func.func @triangular(%A: tensor<4x4xf64, #DCSR>, %B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> { %C = bufferization.alloc_tensor() : tensor<4x4xf64, #DCSR> %0 = linalg.generic #trait_mat_op ins(%A, %B: tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) outs(%C: tensor<4x4xf64, #DCSR>) { ^bb0(%a: f64, %b: f64, %c: f64) : %row = linalg.index 0 : index %col = linalg.index 1 : index %result = sparse_tensor.binary %a, %b : f64, f64 to f64 overlap={ ^bb0(%x: f64, %y: f64): %cmp = arith.cmpi "uge", %col, %row : index %upperTriangleResult = arith.addf %x, %y : f64 %lowerTriangleResult = arith.subf %x, %y : f64 %ret = arith.select %cmp, %upperTriangleResult, %lowerTriangleResult : f64 sparse_tensor.yield %ret : f64 } left=identity right={ ^bb0(%y: f64): %cmp = arith.cmpi "uge", %col, %row : index %lowerTriangleResult = arith.negf %y : f64 %ret = arith.select %cmp, %y, %lowerTriangleResult : f64 sparse_tensor.yield %ret : f64 } linalg.yield %result : f64 } -> tensor<4x4xf64, #DCSR> return %0 : tensor<4x4xf64, #DCSR> } // Perform sub operation (using semi-ring binary op) with a constant threshold. func.func @sub_with_thres(%A: tensor<4x4xf64, #DCSR>, %B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> { %C = bufferization.alloc_tensor() : tensor<4x4xf64, #DCSR> // Defines out-block constant bounds. %thres_out_up = arith.constant 2.0 : f64 %thres_out_lo = arith.constant -2.0 : f64 %0 = linalg.generic #trait_mat_op ins(%A, %B: tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) outs(%C: tensor<4x4xf64, #DCSR>) { ^bb0(%a: f64, %b: f64, %c: f64) : %result = sparse_tensor.binary %a, %b : f64, f64 to f64 overlap={ ^bb0(%x: f64, %y: f64): // Defines in-block constant bounds. %thres_up = arith.constant 1.0 : f64 %thres_lo = arith.constant -1.0 : f64 %result = arith.subf %x, %y : f64 %cmp = arith.cmpf "oge", %result, %thres_up : f64 %tmp = arith.select %cmp, %thres_up, %result : f64 %cmp1 = arith.cmpf "ole", %tmp, %thres_lo : f64 %ret = arith.select %cmp1, %thres_lo, %tmp : f64 sparse_tensor.yield %ret : f64 } left={ ^bb0(%x: f64): // Uses out-block constant bounds. %cmp = arith.cmpf "oge", %x, %thres_out_up : f64 %tmp = arith.select %cmp, %thres_out_up, %x : f64 %cmp1 = arith.cmpf "ole", %tmp, %thres_out_lo : f64 %ret = arith.select %cmp1, %thres_out_lo, %tmp : f64 sparse_tensor.yield %ret : f64 } right={ ^bb0(%y: f64): %ny = arith.negf %y : f64 %cmp = arith.cmpf "oge", %ny, %thres_out_up : f64 %tmp = arith.select %cmp, %thres_out_up, %ny : f64 %cmp1 = arith.cmpf "ole", %tmp, %thres_out_lo : f64 %ret = arith.select %cmp1, %thres_out_lo, %tmp : f64 sparse_tensor.yield %ret : f64 } linalg.yield %result : f64 } -> tensor<4x4xf64, #DCSR> return %0 : tensor<4x4xf64, #DCSR> } // Performs isEqual only on intersecting elements. func.func @intersect_equal(%A: tensor<4x4xf64, #DCSR>, %B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR> { %C = bufferization.alloc_tensor() : tensor<4x4xi8, #DCSR> %0 = linalg.generic #trait_mat_op ins(%A, %B: tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) outs(%C: tensor<4x4xi8, #DCSR>) { ^bb0(%a: f64, %b: f64, %c: i8) : %result = sparse_tensor.binary %a, %b : f64, f64 to i8 overlap={ ^bb0(%x: f64, %y: f64): %cmp = arith.cmpf "oeq", %x, %y : f64 %ret = arith.extui %cmp : i1 to i8 sparse_tensor.yield %ret : i8 } left={} right={} linalg.yield %result : i8 } -> tensor<4x4xi8, #DCSR> return %0 : tensor<4x4xi8, #DCSR> } // Keeps values on left, negate value on right, ignore value when overlapping. func.func @only_left_right(%A: tensor<4x4xf64, #DCSR>, %B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> { %C = bufferization.alloc_tensor() : tensor<4x4xf64, #DCSR> %0 = linalg.generic #trait_mat_op ins(%A, %B: tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) outs(%C: tensor<4x4xf64, #DCSR>) { ^bb0(%a: f64, %b: f64, %c: f64) : %result = sparse_tensor.binary %a, %b : f64, f64 to f64 overlap={} left=identity right={ ^bb0(%y: f64): %ret = arith.negf %y : f64 sparse_tensor.yield %ret : f64 } linalg.yield %result : f64 } -> tensor<4x4xf64, #DCSR> return %0 : tensor<4x4xf64, #DCSR> } // // Utility functions to dump the value of a tensor. // func.func @dump_vec(%arg0: tensor) { // Dump the values array to verify only sparse contents are stored. %c0 = arith.constant 0 : index %d0 = arith.constant -1.0 : f64 %0 = sparse_tensor.values %arg0 : tensor to memref %1 = vector.transfer_read %0[%c0], %d0: memref, vector<16xf64> vector.print %1 : vector<16xf64> // Dump the dense vector to verify structure is correct. %dv = sparse_tensor.convert %arg0 : tensor to tensor %3 = vector.transfer_read %dv[%c0], %d0: tensor, vector<32xf64> vector.print %3 : vector<32xf64> return } func.func @dump_vec_i32(%arg0: tensor) { // Dump the values array to verify only sparse contents are stored. %c0 = arith.constant 0 : index %d0 = arith.constant -1 : i32 %0 = sparse_tensor.values %arg0 : tensor to memref %1 = vector.transfer_read %0[%c0], %d0: memref, vector<24xi32> vector.print %1 : vector<24xi32> // Dump the dense vector to verify structure is correct. %dv = sparse_tensor.convert %arg0 : tensor to tensor %3 = vector.transfer_read %dv[%c0], %d0: tensor, vector<32xi32> vector.print %3 : vector<32xi32> return } func.func @dump_mat(%arg0: tensor) { %d0 = arith.constant 0.0 : f64 %c0 = arith.constant 0 : index %dm = sparse_tensor.convert %arg0 : tensor to tensor %1 = vector.transfer_read %dm[%c0, %c0], %d0: tensor, vector<4x8xf64> vector.print %1 : vector<4x8xf64> return } func.func @dump_mat_4x4(%A: tensor<4x4xf64, #DCSR>) { %c0 = arith.constant 0 : index %du = arith.constant -1.0 : f64 %c = sparse_tensor.convert %A : tensor<4x4xf64, #DCSR> to tensor<4x4xf64> %v = vector.transfer_read %c[%c0, %c0], %du: tensor<4x4xf64>, vector<4x4xf64> vector.print %v : vector<4x4xf64> %1 = sparse_tensor.values %A : tensor<4x4xf64, #DCSR> to memref %2 = vector.transfer_read %1[%c0], %du: memref, vector<16xf64> vector.print %2 : vector<16xf64> return } func.func @dump_mat_4x4_i8(%A: tensor<4x4xi8, #DCSR>) { %c0 = arith.constant 0 : index %du = arith.constant -1 : i8 %c = sparse_tensor.convert %A : tensor<4x4xi8, #DCSR> to tensor<4x4xi8> %v = vector.transfer_read %c[%c0, %c0], %du: tensor<4x4xi8>, vector<4x4xi8> vector.print %v : vector<4x4xi8> %1 = sparse_tensor.values %A : tensor<4x4xi8, #DCSR> to memref %2 = vector.transfer_read %1[%c0], %du: memref, vector<16xi8> vector.print %2 : vector<16xi8> return } // Driver method to call and verify kernels. func.func @entry() { %c0 = arith.constant 0 : index // Setup sparse vectors. %v1 = arith.constant sparse< [ [0], [3], [11], [17], [20], [21], [28], [29], [31] ], [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ] > : tensor<32xf64> %v2 = arith.constant sparse< [ [1], [3], [4], [10], [16], [18], [21], [28], [29], [31] ], [11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0 ] > : tensor<32xf64> %v3 = arith.constant dense< [0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 0., 1.] > : tensor<32xf64> %sv1 = sparse_tensor.convert %v1 : tensor<32xf64> to tensor %sv2 = sparse_tensor.convert %v2 : tensor<32xf64> to tensor %dv3 = tensor.cast %v3 : tensor<32xf64> to tensor // Setup sparse matrices. %m1 = arith.constant sparse< [ [0,0], [0,1], [1,7], [2,2], [2,4], [2,7], [3,0], [3,2], [3,3] ], [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ] > : tensor<4x8xf64> %m2 = arith.constant sparse< [ [0,0], [0,7], [1,0], [1,6], [2,1], [2,7] ], [6.0, 5.0, 4.0, 3.0, 2.0, 1.0 ] > : tensor<4x8xf64> %sm1 = sparse_tensor.convert %m1 : tensor<4x8xf64> to tensor %sm2 = sparse_tensor.convert %m2 : tensor<4x8xf64> to tensor %m3 = arith.constant dense< [ [ 1.0, 0.0, 3.0, 0.0], [ 0.0, 2.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 4.0], [ 3.0, 4.0, 0.0, 0.0] ]> : tensor<4x4xf64> %m4 = arith.constant dense< [ [ 1.0, 0.0, 1.0, 1.0], [ 0.0, 0.5, 0.0, 0.0], [ 1.0, 5.0, 2.0, 0.0], [ 2.0, 0.0, 0.0, 0.0] ]> : tensor<4x4xf64> %sm3 = sparse_tensor.convert %m3 : tensor<4x4xf64> to tensor<4x4xf64, #DCSR> %sm4 = sparse_tensor.convert %m4 : tensor<4x4xf64> to tensor<4x4xf64, #DCSR> // Call sparse vector kernels. %0 = call @vector_min(%sv1, %sv2) : (tensor, tensor) -> tensor %1 = call @vector_mul(%sv1, %dv3) : (tensor, tensor) -> tensor %2 = call @vector_setdiff(%sv1, %sv2) : (tensor, tensor) -> tensor %3 = call @vector_index(%sv1) : (tensor) -> tensor // Call sparse matrix kernels. %5 = call @matrix_intersect(%sm1, %sm2) : (tensor, tensor) -> tensor %6 = call @add_tensor_1(%sm3, %sm4) : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> %7 = call @add_tensor_2(%sm3, %sm4) : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> %8 = call @triangular(%sm3, %sm4) : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> %9 = call @sub_with_thres(%sm3, %sm4) : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> %10 = call @intersect_equal(%sm3, %sm4) : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR> %11 = call @only_left_right(%sm3, %sm4) : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> // // Verify the results. // // CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 ) // CHECK-NEXT: ( 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( 0, 11, 0, 12, 13, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 15, 0, 16, 0, 0, 17, 0, 0, 0, 0, 0, 0, 18, 19, 0, 20 ) // CHECK-NEXT: ( 1, 11, 2, 13, 14, 3, 15, 4, 16, 5, 6, 7, 8, 9, -1, -1 ) // CHECK-NEXT: ( 1, 11, 0, 2, 13, 0, 0, 0, 0, 0, 14, 3, 0, 0, 0, 0, 15, 4, 16, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 ) // CHECK-NEXT: ( 0, 6, 3, 28, 0, 6, 56, 72, 9, -1, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 28, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 56, 72, 0, 9 ) // CHECK-NEXT: ( 1, 3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) // CHECK-NEXT: ( 0, 3, 11, 17, 20, 21, 28, 29, 31, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 17, 0, 0, 20, 21, 0, 0, 0, 0, 0, 0, 28, 29, 0, 31 ) // CHECK-NEXT: ( ( 7, 0, 0, 0, 0, 0, 0, -5 ), ( -4, 0, 0, 0, 0, 0, -3, 0 ), ( 0, -2, 0, 0, 0, 0, 0, 7 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ) ) // CHECK-NEXT: ( ( 2, 0, 4, 1 ), ( 0, 2.5, 0, 0 ), ( 1, 5, 2, 4 ), ( 5, 4, 0, 0 ) ) // CHECK-NEXT: ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( ( 2, 0, 4, 1 ), ( 0, 2.5, 0, 0 ), ( 1, 5, 2, 4 ), ( 5, 4, 0, 0 ) ) // CHECK-NEXT: ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( ( 2, 0, 4, 1 ), ( 0, 2.5, 0, 0 ), ( -1, -5, 2, 4 ), ( 1, 4, 0, 0 ) ) // CHECK-NEXT: ( 2, 4, 1, 2.5, -1, -5, 2, 4, 1, 4, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( ( 0, 0, 1, -1 ), ( 0, 1, 0, 0 ), ( -1, -2, -2, 2 ), ( 1, 2, 0, 0 ) ) // CHECK-NEXT: ( 0, 1, -1, 1, -1, -2, -2, 2, 1, 2, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( ( 1, 0, 0, 0 ), ( 0, 0, 0, 0 ), ( 0, 0, 0, 0 ), ( 0, 0, 0, 0 ) ) // CHECK-NEXT: ( 1, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ) // CHECK-NEXT: ( ( 0, 0, 0, -1 ), ( 0, 0, 0, 0 ), ( -1, -5, -2, 4 ), ( 0, 4, 0, 0 ) ) // CHECK-NEXT: ( -1, -1, -5, -2, 4, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ) // call @dump_vec(%sv1) : (tensor) -> () call @dump_vec(%sv2) : (tensor) -> () call @dump_vec(%0) : (tensor) -> () call @dump_vec(%1) : (tensor) -> () call @dump_vec(%2) : (tensor) -> () call @dump_vec_i32(%3) : (tensor) -> () call @dump_mat(%5) : (tensor) -> () call @dump_mat_4x4(%6) : (tensor<4x4xf64, #DCSR>) -> () call @dump_mat_4x4(%7) : (tensor<4x4xf64, #DCSR>) -> () call @dump_mat_4x4(%8) : (tensor<4x4xf64, #DCSR>) -> () call @dump_mat_4x4(%9) : (tensor<4x4xf64, #DCSR>) -> () call @dump_mat_4x4_i8(%10) : (tensor<4x4xi8, #DCSR>) -> () call @dump_mat_4x4(%11) : (tensor<4x4xf64, #DCSR>) -> () // Release the resources. bufferization.dealloc_tensor %sv1 : tensor bufferization.dealloc_tensor %sv2 : tensor bufferization.dealloc_tensor %sm1 : tensor bufferization.dealloc_tensor %sm2 : tensor bufferization.dealloc_tensor %sm3 : tensor<4x4xf64, #DCSR> bufferization.dealloc_tensor %sm4 : tensor<4x4xf64, #DCSR> bufferization.dealloc_tensor %0 : tensor bufferization.dealloc_tensor %1 : tensor bufferization.dealloc_tensor %2 : tensor bufferization.dealloc_tensor %3 : tensor bufferization.dealloc_tensor %5 : tensor bufferization.dealloc_tensor %6 : tensor<4x4xf64, #DCSR> bufferization.dealloc_tensor %7 : tensor<4x4xf64, #DCSR> bufferization.dealloc_tensor %8 : tensor<4x4xf64, #DCSR> bufferization.dealloc_tensor %9 : tensor<4x4xf64, #DCSR> bufferization.dealloc_tensor %10 : tensor<4x4xi8, #DCSR> bufferization.dealloc_tensor %11 : tensor<4x4xf64, #DCSR> return } }