// RUN: mlir-opt %s -one-shot-bufferize="allow-unknown-ops" -split-input-file | FileCheck %s // Run fuzzer with different seeds. // RUN: mlir-opt %s -one-shot-bufferize="test-analysis-only analysis-fuzzer-seed=23" -split-input-file -o /dev/null // RUN: mlir-opt %s -one-shot-bufferize="test-analysis-only analysis-fuzzer-seed=59" -split-input-file -o /dev/null // RUN: mlir-opt %s -one-shot-bufferize="test-analysis-only analysis-fuzzer-seed=91" -split-input-file -o /dev/null // CHECK-LABEL: func @use_tensor_func_arg( // CHECK-SAME: %[[A:.*]]: tensor func.func @use_tensor_func_arg(%A : tensor) -> (vector<4xf32>) { %c0 = arith.constant 0 : index %f0 = arith.constant 0.0 : f32 // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]] // CHECK: %[[res:.*]] = vector.transfer_read %[[A_memref]] %0 = vector.transfer_read %A[%c0], %f0 : tensor, vector<4xf32> // CHECK: return %[[res]] return %0 : vector<4xf32> } // ----- // CHECK-LABEL: func @return_tensor( // CHECK-SAME: %[[A:.*]]: tensor func.func @return_tensor(%A : tensor, %v : vector<4xf32>) -> (tensor) { %c0 = arith.constant 0 : index // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]] // CHECK: %[[dim:.*]] = tensor.dim %[[A]] // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]]) // CHECK: memref.copy %[[A_memref]], %[[alloc]] // CHECK: vector.transfer_write %{{.*}}, %[[alloc]] // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]] %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor // CHECK: memref.dealloc %[[alloc]] // CHECK: return %[[res_tensor]] return %0 : tensor } // ----- // CHECK-LABEL: func @func_without_tensor_args func.func @func_without_tensor_args(%v : vector<10xf32>) -> () { // CHECK: %[[alloc:.*]] = memref.alloc() %0 = bufferization.alloc_tensor() : tensor<10xf32> %c0 = arith.constant 0 : index // CHECK: vector.transfer_write %{{.*}}, %[[alloc]] %1 = vector.transfer_write %v, %0[%c0] : vector<10xf32>, tensor<10xf32> %cst = arith.constant 0.0 : f32 // CHECK: vector.transfer_read %[[alloc]] %r = vector.transfer_read %1[%c0], %cst : tensor<10xf32>, vector<11xf32> vector.print %r : vector<11xf32> return } // ----- // CHECK-LABEL: func private @private_func func.func private @private_func(tensor) -> () // CHECK-LABEL: func @empty_func() func.func @empty_func() -> () { return } // ----- // CHECK-LABEL: func @read_after_write_conflict( func.func @read_after_write_conflict(%cst : f32, %idx : index, %idx2 : index) -> (f32, f32) { // CHECK-DAG: %[[alloc:.*]] = memref.alloc // CHECK-DAG: %[[dummy:.*]] = "test.dummy_op" // CHECK-DAG: %[[dummy_m:.*]] = bufferization.to_memref %[[dummy]] %t = "test.dummy_op"() : () -> (tensor<10xf32>) // CHECK: memref.copy %[[dummy_m]], %[[alloc]] // CHECK: memref.store %{{.*}}, %[[alloc]] %write = tensor.insert %cst into %t[%idx2] : tensor<10xf32> // CHECK: %[[read:.*]] = "test.some_use"(%[[dummy]]) %read = "test.some_use"(%t) : (tensor<10xf32>) -> (f32) // CHECK: %[[read2:.*]] = memref.load %[[alloc]] %read2 = tensor.extract %write[%idx] : tensor<10xf32> // CHECK: memref.dealloc %[[alloc]] // CHECK: return %[[read]], %[[read2]] return %read, %read2 : f32, f32 } // ----- // CHECK-LABEL: func @copy_deallocated( func.func @copy_deallocated() -> tensor<10xf32> { // CHECK: %[[alloc:.*]] = memref.alloc() %0 = bufferization.alloc_tensor() : tensor<10xf32> // CHECK: %[[alloc_tensor:.*]] = bufferization.to_tensor %[[alloc]] // CHECK: memref.dealloc %[[alloc]] // CHECK: return %[[alloc_tensor]] return %0 : tensor<10xf32> } // ----- // CHECK-LABEL: func @select_different_tensors( // CHECK-SAME: %[[t:.*]]: tensor func.func @select_different_tensors(%t: tensor, %sz: index, %c: i1) -> tensor { // CHECK-DAG: %[[m:.*]] = bufferization.to_memref %[[t]] : memref // CHECK-DAG: %[[alloc:.*]] = memref.alloc(%{{.*}}) {{.*}} : memref %0 = bufferization.alloc_tensor(%sz) : tensor // A cast must be inserted because %t and %0 have different memref types. // CHECK: %[[casted:.*]] = memref.cast %[[alloc]] : memref to memref // CHECK: arith.select %{{.*}}, %[[casted]], %[[m]] %1 = arith.select %c, %0, %t : tensor return %1 : tensor } // ----- // CHECK-LABEL: func @alloc_tensor_with_copy( // CHECK-SAME: %[[t:.*]]: tensor<5xf32>) // TODO: Add a test case with dynamic dim size. This is not possible at the // moment because this would create a tensor op during bufferization. That is // currently forbidden. func.func @alloc_tensor_with_copy(%t: tensor<5xf32>) -> tensor<5xf32> { // CHECK: %[[m:.*]] = bufferization.to_memref %[[t]] // CHECK: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<5xf32> // CHECK: memref.copy %[[m]], %[[alloc]] %0 = bufferization.alloc_tensor() copy(%t) : tensor<5xf32> // CHECK: %[[r:.*]] = bufferization.to_tensor %[[alloc]] // CHECK: memref.dealloc %[[alloc]] // CHECK: return %[[r]] return %0 : tensor<5xf32> } // ----- // CHECK-LABEL: func @alloc_tensor_with_memory_space() func.func @alloc_tensor_with_memory_space() -> tensor<5xf32> { // CHECK: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<5xf32, 1> %0 = bufferization.alloc_tensor() {memory_space = 1 : ui64} : tensor<5xf32> // CHECK: %[[r:.*]] = bufferization.to_tensor %[[alloc]] // CHECK: memref.dealloc %[[alloc]] // CHECK: return %[[r]] return %0 : tensor<5xf32> }