//===- OpenMPToLLVMIRTranslation.cpp - Translate OpenMP dialect to LLVM IR-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a translation between the MLIR OpenMP dialect and LLVM // IR. // //===----------------------------------------------------------------------===// #include "mlir/Target/LLVMIR/Dialect/OpenMP/OpenMPToLLVMIRTranslation.h" #include "mlir/Dialect/OpenMP/OpenMPDialect.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/IR/Operation.h" #include "mlir/Support/LLVM.h" #include "mlir/Target/LLVMIR/ModuleTranslation.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/IRBuilder.h" using namespace mlir; namespace { static llvm::omp::ScheduleKind convertToScheduleKind(Optional schedKind) { if (!schedKind.has_value()) return llvm::omp::OMP_SCHEDULE_Default; switch (schedKind.value()) { case omp::ClauseScheduleKind::Static: return llvm::omp::OMP_SCHEDULE_Static; case omp::ClauseScheduleKind::Dynamic: return llvm::omp::OMP_SCHEDULE_Dynamic; case omp::ClauseScheduleKind::Guided: return llvm::omp::OMP_SCHEDULE_Guided; case omp::ClauseScheduleKind::Auto: return llvm::omp::OMP_SCHEDULE_Auto; case omp::ClauseScheduleKind::Runtime: return llvm::omp::OMP_SCHEDULE_Runtime; } llvm_unreachable("unhandled schedule clause argument"); } /// ModuleTranslation stack frame for OpenMP operations. This keeps track of the /// insertion points for allocas. class OpenMPAllocaStackFrame : public LLVM::ModuleTranslation::StackFrameBase { public: MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPAllocaStackFrame) explicit OpenMPAllocaStackFrame(llvm::OpenMPIRBuilder::InsertPointTy allocaIP) : allocaInsertPoint(allocaIP) {} llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint; }; /// ModuleTranslation stack frame containing the partial mapping between MLIR /// values and their LLVM IR equivalents. class OpenMPVarMappingStackFrame : public LLVM::ModuleTranslation::StackFrameBase< OpenMPVarMappingStackFrame> { public: MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPVarMappingStackFrame) explicit OpenMPVarMappingStackFrame( const DenseMap &mapping) : mapping(mapping) {} DenseMap mapping; }; } // namespace /// Find the insertion point for allocas given the current insertion point for /// normal operations in the builder. static llvm::OpenMPIRBuilder::InsertPointTy findAllocaInsertPoint(llvm::IRBuilderBase &builder, const LLVM::ModuleTranslation &moduleTranslation) { // If there is an alloca insertion point on stack, i.e. we are in a nested // operation and a specific point was provided by some surrounding operation, // use it. llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint; WalkResult walkResult = moduleTranslation.stackWalk( [&](const OpenMPAllocaStackFrame &frame) { allocaInsertPoint = frame.allocaInsertPoint; return WalkResult::interrupt(); }); if (walkResult.wasInterrupted()) return allocaInsertPoint; // Otherwise, insert to the entry block of the surrounding function. // If the current IRBuilder InsertPoint is the function's entry, it cannot // also be used for alloca insertion which would result in insertion order // confusion. Create a new BasicBlock for the Builder and use the entry block // for the allocs. // TODO: Create a dedicated alloca BasicBlock at function creation such that // we do not need to move the current InertPoint here. if (builder.GetInsertBlock() == &builder.GetInsertBlock()->getParent()->getEntryBlock()) { assert(builder.GetInsertPoint() == builder.GetInsertBlock()->end() && "Assuming end of basic block"); llvm::BasicBlock *entryBB = llvm::BasicBlock::Create( builder.getContext(), "entry", builder.GetInsertBlock()->getParent(), builder.GetInsertBlock()->getNextNode()); builder.CreateBr(entryBB); builder.SetInsertPoint(entryBB); } llvm::BasicBlock &funcEntryBlock = builder.GetInsertBlock()->getParent()->getEntryBlock(); return llvm::OpenMPIRBuilder::InsertPointTy( &funcEntryBlock, funcEntryBlock.getFirstInsertionPt()); } /// Converts the given region that appears within an OpenMP dialect operation to /// LLVM IR, creating a branch from the `sourceBlock` to the entry block of the /// region, and a branch from any block with an successor-less OpenMP terminator /// to `continuationBlock`. Populates `continuationBlockPHIs` with the PHI nodes /// of the continuation block if provided. static llvm::BasicBlock *convertOmpOpRegions( Region ®ion, StringRef blockName, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation, LogicalResult &bodyGenStatus, SmallVectorImpl *continuationBlockPHIs = nullptr) { llvm::BasicBlock *continuationBlock = splitBB(builder, true, "omp.region.cont"); llvm::BasicBlock *sourceBlock = builder.GetInsertBlock(); llvm::LLVMContext &llvmContext = builder.getContext(); for (Block &bb : region) { llvm::BasicBlock *llvmBB = llvm::BasicBlock::Create( llvmContext, blockName, builder.GetInsertBlock()->getParent(), builder.GetInsertBlock()->getNextNode()); moduleTranslation.mapBlock(&bb, llvmBB); } llvm::Instruction *sourceTerminator = sourceBlock->getTerminator(); // Terminators (namely YieldOp) may be forwarding values to the region that // need to be available in the continuation block. Collect the types of these // operands in preparation of creating PHI nodes. SmallVector continuationBlockPHITypes; bool operandsProcessed = false; unsigned numYields = 0; for (Block &bb : region.getBlocks()) { if (omp::YieldOp yield = dyn_cast(bb.getTerminator())) { if (!operandsProcessed) { for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) { continuationBlockPHITypes.push_back( moduleTranslation.convertType(yield->getOperand(i).getType())); } operandsProcessed = true; } else { assert(continuationBlockPHITypes.size() == yield->getNumOperands() && "mismatching number of values yielded from the region"); for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) { llvm::Type *operandType = moduleTranslation.convertType(yield->getOperand(i).getType()); (void)operandType; assert(continuationBlockPHITypes[i] == operandType && "values of mismatching types yielded from the region"); } } numYields++; } } // Insert PHI nodes in the continuation block for any values forwarded by the // terminators in this region. if (!continuationBlockPHITypes.empty()) assert( continuationBlockPHIs && "expected continuation block PHIs if converted regions yield values"); if (continuationBlockPHIs) { llvm::IRBuilderBase::InsertPointGuard guard(builder); continuationBlockPHIs->reserve(continuationBlockPHITypes.size()); builder.SetInsertPoint(continuationBlock, continuationBlock->begin()); for (llvm::Type *ty : continuationBlockPHITypes) continuationBlockPHIs->push_back(builder.CreatePHI(ty, numYields)); } // Convert blocks one by one in topological order to ensure // defs are converted before uses. SetVector blocks = LLVM::detail::getTopologicallySortedBlocks(region); for (Block *bb : blocks) { llvm::BasicBlock *llvmBB = moduleTranslation.lookupBlock(bb); // Retarget the branch of the entry block to the entry block of the // converted region (regions are single-entry). if (bb->isEntryBlock()) { assert(sourceTerminator->getNumSuccessors() == 1 && "provided entry block has multiple successors"); assert(sourceTerminator->getSuccessor(0) == continuationBlock && "ContinuationBlock is not the successor of the entry block"); sourceTerminator->setSuccessor(0, llvmBB); } llvm::IRBuilderBase::InsertPointGuard guard(builder); if (failed( moduleTranslation.convertBlock(*bb, bb->isEntryBlock(), builder))) { bodyGenStatus = failure(); return continuationBlock; } // Special handling for `omp.yield` and `omp.terminator` (we may have more // than one): they return the control to the parent OpenMP dialect operation // so replace them with the branch to the continuation block. We handle this // here to avoid relying inter-function communication through the // ModuleTranslation class to set up the correct insertion point. This is // also consistent with MLIR's idiom of handling special region terminators // in the same code that handles the region-owning operation. Operation *terminator = bb->getTerminator(); if (isa(terminator)) { builder.CreateBr(continuationBlock); for (unsigned i = 0, e = terminator->getNumOperands(); i < e; ++i) (*continuationBlockPHIs)[i]->addIncoming( moduleTranslation.lookupValue(terminator->getOperand(i)), llvmBB); } } // After all blocks have been traversed and values mapped, connect the PHI // nodes to the results of preceding blocks. LLVM::detail::connectPHINodes(region, moduleTranslation); // Remove the blocks and values defined in this region from the mapping since // they are not visible outside of this region. This allows the same region to // be converted several times, that is cloned, without clashes, and slightly // speeds up the lookups. moduleTranslation.forgetMapping(region); return continuationBlock; } /// Convert ProcBindKind from MLIR-generated enum to LLVM enum. static llvm::omp::ProcBindKind getProcBindKind(omp::ClauseProcBindKind kind) { switch (kind) { case omp::ClauseProcBindKind::Close: return llvm::omp::ProcBindKind::OMP_PROC_BIND_close; case omp::ClauseProcBindKind::Master: return llvm::omp::ProcBindKind::OMP_PROC_BIND_master; case omp::ClauseProcBindKind::Primary: return llvm::omp::ProcBindKind::OMP_PROC_BIND_primary; case omp::ClauseProcBindKind::Spread: return llvm::omp::ProcBindKind::OMP_PROC_BIND_spread; } llvm_unreachable("Unknown ClauseProcBindKind kind"); } /// Converts the OpenMP parallel operation to LLVM IR. static LogicalResult convertOmpParallel(omp::ParallelOp opInst, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; // TODO: support error propagation in OpenMPIRBuilder and use it instead of // relying on captured variables. LogicalResult bodyGenStatus = success(); auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) { // Save the alloca insertion point on ModuleTranslation stack for use in // nested regions. LLVM::ModuleTranslation::SaveStack frame( moduleTranslation, allocaIP); // ParallelOp has only one region associated with it. builder.restoreIP(codeGenIP); convertOmpOpRegions(opInst.getRegion(), "omp.par.region", builder, moduleTranslation, bodyGenStatus); }; // TODO: Perform appropriate actions according to the data-sharing // attribute (shared, private, firstprivate, ...) of variables. // Currently defaults to shared. auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP, llvm::Value &, llvm::Value &vPtr, llvm::Value *&replacementValue) -> InsertPointTy { replacementValue = &vPtr; return codeGenIP; }; // TODO: Perform finalization actions for variables. This has to be // called for variables which have destructors/finalizers. auto finiCB = [&](InsertPointTy codeGenIP) {}; llvm::Value *ifCond = nullptr; if (auto ifExprVar = opInst.if_expr_var()) ifCond = moduleTranslation.lookupValue(ifExprVar); llvm::Value *numThreads = nullptr; if (auto numThreadsVar = opInst.num_threads_var()) numThreads = moduleTranslation.lookupValue(numThreadsVar); auto pbKind = llvm::omp::OMP_PROC_BIND_default; if (auto bind = opInst.proc_bind_val()) pbKind = getProcBindKind(*bind); // TODO: Is the Parallel construct cancellable? bool isCancellable = false; llvm::OpenMPIRBuilder::InsertPointTy allocaIP = findAllocaInsertPoint(builder, moduleTranslation); llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createParallel( ompLoc, allocaIP, bodyGenCB, privCB, finiCB, ifCond, numThreads, pbKind, isCancellable)); return bodyGenStatus; } /// Converts an OpenMP 'master' operation into LLVM IR using OpenMPIRBuilder. static LogicalResult convertOmpMaster(Operation &opInst, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; // TODO: support error propagation in OpenMPIRBuilder and use it instead of // relying on captured variables. LogicalResult bodyGenStatus = success(); auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) { // MasterOp has only one region associated with it. auto ®ion = cast(opInst).getRegion(); builder.restoreIP(codeGenIP); convertOmpOpRegions(region, "omp.master.region", builder, moduleTranslation, bodyGenStatus); }; // TODO: Perform finalization actions for variables. This has to be // called for variables which have destructors/finalizers. auto finiCB = [&](InsertPointTy codeGenIP) {}; llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createMaster( ompLoc, bodyGenCB, finiCB)); return success(); } /// Converts an OpenMP 'critical' operation into LLVM IR using OpenMPIRBuilder. static LogicalResult convertOmpCritical(Operation &opInst, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; auto criticalOp = cast(opInst); // TODO: support error propagation in OpenMPIRBuilder and use it instead of // relying on captured variables. LogicalResult bodyGenStatus = success(); auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) { // CriticalOp has only one region associated with it. auto ®ion = cast(opInst).getRegion(); builder.restoreIP(codeGenIP); convertOmpOpRegions(region, "omp.critical.region", builder, moduleTranslation, bodyGenStatus); }; // TODO: Perform finalization actions for variables. This has to be // called for variables which have destructors/finalizers. auto finiCB = [&](InsertPointTy codeGenIP) {}; llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); llvm::LLVMContext &llvmContext = moduleTranslation.getLLVMContext(); llvm::Constant *hint = nullptr; // If it has a name, it probably has a hint too. if (criticalOp.nameAttr()) { // The verifiers in OpenMP Dialect guarentee that all the pointers are // non-null auto symbolRef = criticalOp.nameAttr().cast(); auto criticalDeclareOp = SymbolTable::lookupNearestSymbolFrom(criticalOp, symbolRef); hint = llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvmContext), static_cast(criticalDeclareOp.hint_val())); } builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createCritical( ompLoc, bodyGenCB, finiCB, criticalOp.name().value_or(""), hint)); return success(); } /// Returns a reduction declaration that corresponds to the given reduction /// operation in the given container. Currently only supports reductions inside /// WsLoopOp but can be easily extended. static omp::ReductionDeclareOp findReductionDecl(omp::WsLoopOp container, omp::ReductionOp reduction) { SymbolRefAttr reductionSymbol; for (unsigned i = 0, e = container.getNumReductionVars(); i < e; ++i) { if (container.reduction_vars()[i] != reduction.accumulator()) continue; reductionSymbol = (*container.reductions())[i].cast(); break; } assert(reductionSymbol && "reduction operation must be associated with a declaration"); return SymbolTable::lookupNearestSymbolFrom( container, reductionSymbol); } /// Populates `reductions` with reduction declarations used in the given loop. static void collectReductionDecls(omp::WsLoopOp loop, SmallVectorImpl &reductions) { Optional attr = loop.reductions(); if (!attr) return; reductions.reserve(reductions.size() + loop.getNumReductionVars()); for (auto symbolRef : attr->getAsRange()) { reductions.push_back( SymbolTable::lookupNearestSymbolFrom( loop, symbolRef)); } } /// Translates the blocks contained in the given region and appends them to at /// the current insertion point of `builder`. The operations of the entry block /// are appended to the current insertion block, which is not expected to have a /// terminator. If set, `continuationBlockArgs` is populated with translated /// values that correspond to the values omp.yield'ed from the region. static LogicalResult inlineConvertOmpRegions( Region ®ion, StringRef blockName, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation, SmallVectorImpl *continuationBlockArgs = nullptr) { if (region.empty()) return success(); // Special case for single-block regions that don't create additional blocks: // insert operations without creating additional blocks. if (llvm::hasSingleElement(region)) { moduleTranslation.mapBlock(®ion.front(), builder.GetInsertBlock()); if (failed(moduleTranslation.convertBlock( region.front(), /*ignoreArguments=*/true, builder))) return failure(); // The continuation arguments are simply the translated terminator operands. if (continuationBlockArgs) llvm::append_range( *continuationBlockArgs, moduleTranslation.lookupValues(region.front().back().getOperands())); // Drop the mapping that is no longer necessary so that the same region can // be processed multiple times. moduleTranslation.forgetMapping(region); return success(); } LogicalResult bodyGenStatus = success(); SmallVector phis; llvm::BasicBlock *continuationBlock = convertOmpOpRegions( region, blockName, builder, moduleTranslation, bodyGenStatus, &phis); if (failed(bodyGenStatus)) return failure(); if (continuationBlockArgs) llvm::append_range(*continuationBlockArgs, phis); builder.SetInsertPoint(continuationBlock, continuationBlock->getFirstInsertionPt()); return success(); } namespace { /// Owning equivalents of OpenMPIRBuilder::(Atomic)ReductionGen that are used to /// store lambdas with capture. using OwningReductionGen = std::function; using OwningAtomicReductionGen = std::function; } // namespace /// Create an OpenMPIRBuilder-compatible reduction generator for the given /// reduction declaration. The generator uses `builder` but ignores its /// insertion point. static OwningReductionGen makeReductionGen(omp::ReductionDeclareOp decl, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { // The lambda is mutable because we need access to non-const methods of decl // (which aren't actually mutating it), and we must capture decl by-value to // avoid the dangling reference after the parent function returns. OwningReductionGen gen = [&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint, llvm::Value *lhs, llvm::Value *rhs, llvm::Value *&result) mutable { Region &reductionRegion = decl.reductionRegion(); moduleTranslation.mapValue(reductionRegion.front().getArgument(0), lhs); moduleTranslation.mapValue(reductionRegion.front().getArgument(1), rhs); builder.restoreIP(insertPoint); SmallVector phis; if (failed(inlineConvertOmpRegions(reductionRegion, "omp.reduction.nonatomic.body", builder, moduleTranslation, &phis))) return llvm::OpenMPIRBuilder::InsertPointTy(); assert(phis.size() == 1); result = phis[0]; return builder.saveIP(); }; return gen; } /// Create an OpenMPIRBuilder-compatible atomic reduction generator for the /// given reduction declaration. The generator uses `builder` but ignores its /// insertion point. Returns null if there is no atomic region available in the /// reduction declaration. static OwningAtomicReductionGen makeAtomicReductionGen(omp::ReductionDeclareOp decl, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { if (decl.atomicReductionRegion().empty()) return OwningAtomicReductionGen(); // The lambda is mutable because we need access to non-const methods of decl // (which aren't actually mutating it), and we must capture decl by-value to // avoid the dangling reference after the parent function returns. OwningAtomicReductionGen atomicGen = [&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint, llvm::Type *, llvm::Value *lhs, llvm::Value *rhs) mutable { Region &atomicRegion = decl.atomicReductionRegion(); moduleTranslation.mapValue(atomicRegion.front().getArgument(0), lhs); moduleTranslation.mapValue(atomicRegion.front().getArgument(1), rhs); builder.restoreIP(insertPoint); SmallVector phis; if (failed(inlineConvertOmpRegions(atomicRegion, "omp.reduction.atomic.body", builder, moduleTranslation, &phis))) return llvm::OpenMPIRBuilder::InsertPointTy(); assert(phis.empty()); return builder.saveIP(); }; return atomicGen; } /// Converts an OpenMP 'ordered' operation into LLVM IR using OpenMPIRBuilder. static LogicalResult convertOmpOrdered(Operation &opInst, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { auto orderedOp = cast(opInst); omp::ClauseDepend dependType = *orderedOp.depend_type_val(); bool isDependSource = dependType == omp::ClauseDepend::dependsource; unsigned numLoops = *orderedOp.num_loops_val(); SmallVector vecValues = moduleTranslation.lookupValues(orderedOp.depend_vec_vars()); size_t indexVecValues = 0; while (indexVecValues < vecValues.size()) { SmallVector storeValues; storeValues.reserve(numLoops); for (unsigned i = 0; i < numLoops; i++) { storeValues.push_back(vecValues[indexVecValues]); indexVecValues++; } llvm::OpenMPIRBuilder::InsertPointTy allocaIP = findAllocaInsertPoint(builder, moduleTranslation); llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createOrderedDepend( ompLoc, allocaIP, numLoops, storeValues, ".cnt.addr", isDependSource)); } return success(); } /// Converts an OpenMP 'ordered_region' operation into LLVM IR using /// OpenMPIRBuilder. static LogicalResult convertOmpOrderedRegion(Operation &opInst, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; auto orderedRegionOp = cast(opInst); // TODO: The code generation for ordered simd directive is not supported yet. if (orderedRegionOp.simd()) return failure(); // TODO: support error propagation in OpenMPIRBuilder and use it instead of // relying on captured variables. LogicalResult bodyGenStatus = success(); auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) { // OrderedOp has only one region associated with it. auto ®ion = cast(opInst).getRegion(); builder.restoreIP(codeGenIP); convertOmpOpRegions(region, "omp.ordered.region", builder, moduleTranslation, bodyGenStatus); }; // TODO: Perform finalization actions for variables. This has to be // called for variables which have destructors/finalizers. auto finiCB = [&](InsertPointTy codeGenIP) {}; llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); builder.restoreIP( moduleTranslation.getOpenMPBuilder()->createOrderedThreadsSimd( ompLoc, bodyGenCB, finiCB, !orderedRegionOp.simd())); return bodyGenStatus; } static LogicalResult convertOmpSections(Operation &opInst, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; using StorableBodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy; auto sectionsOp = cast(opInst); // TODO: Support the following clauses: private, firstprivate, lastprivate, // reduction, allocate if (!sectionsOp.reduction_vars().empty() || sectionsOp.reductions() || !sectionsOp.allocate_vars().empty() || !sectionsOp.allocators_vars().empty()) return emitError(sectionsOp.getLoc()) << "reduction and allocate clauses are not supported for sections " "construct"; LogicalResult bodyGenStatus = success(); SmallVector sectionCBs; for (Operation &op : *sectionsOp.region().begin()) { auto sectionOp = dyn_cast(op); if (!sectionOp) // omp.terminator continue; Region ®ion = sectionOp.region(); auto sectionCB = [®ion, &builder, &moduleTranslation, &bodyGenStatus]( InsertPointTy allocaIP, InsertPointTy codeGenIP) { builder.restoreIP(codeGenIP); convertOmpOpRegions(region, "omp.section.region", builder, moduleTranslation, bodyGenStatus); }; sectionCBs.push_back(sectionCB); } // No sections within omp.sections operation - skip generation. This situation // is only possible if there is only a terminator operation inside the // sections operation if (sectionCBs.empty()) return success(); assert(isa(*sectionsOp.region().op_begin())); // TODO: Perform appropriate actions according to the data-sharing // attribute (shared, private, firstprivate, ...) of variables. // Currently defaults to shared. auto privCB = [&](InsertPointTy, InsertPointTy codeGenIP, llvm::Value &, llvm::Value &vPtr, llvm::Value *&replacementValue) -> InsertPointTy { replacementValue = &vPtr; return codeGenIP; }; // TODO: Perform finalization actions for variables. This has to be // called for variables which have destructors/finalizers. auto finiCB = [&](InsertPointTy codeGenIP) {}; llvm::OpenMPIRBuilder::InsertPointTy allocaIP = findAllocaInsertPoint(builder, moduleTranslation); llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createSections( ompLoc, allocaIP, sectionCBs, privCB, finiCB, false, sectionsOp.nowait())); return bodyGenStatus; } /// Converts an OpenMP single construct into LLVM IR using OpenMPIRBuilder. static LogicalResult convertOmpSingle(omp::SingleOp &singleOp, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); LogicalResult bodyGenStatus = success(); auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) { builder.restoreIP(codegenIP); convertOmpOpRegions(singleOp.region(), "omp.single.region", builder, moduleTranslation, bodyGenStatus); }; auto finiCB = [&](InsertPointTy codeGenIP) {}; builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createSingle( ompLoc, bodyCB, finiCB, singleOp.nowait(), /*DidIt=*/nullptr)); return bodyGenStatus; } /// Converts an OpenMP task construct into LLVM IR using OpenMPIRBuilder. static LogicalResult convertOmpTaskOp(omp::TaskOp taskOp, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; LogicalResult bodyGenStatus = success(); if (taskOp.if_expr() || taskOp.final_expr() || taskOp.untiedAttr() || taskOp.mergeableAttr() || taskOp.in_reductions() || taskOp.priority() || !taskOp.allocate_vars().empty()) { return taskOp.emitError("unhandled clauses for translation to LLVM IR"); } auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) { builder.restoreIP(codegenIP); convertOmpOpRegions(taskOp.region(), "omp.task.region", builder, moduleTranslation, bodyGenStatus); }; llvm::OpenMPIRBuilder::InsertPointTy allocaIP = findAllocaInsertPoint(builder, moduleTranslation); llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTask( ompLoc, allocaIP, bodyCB, !taskOp.untied())); return bodyGenStatus; } /// Converts an OpenMP workshare loop into LLVM IR using OpenMPIRBuilder. static LogicalResult convertOmpWsLoop(Operation &opInst, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { auto loop = cast(opInst); // TODO: this should be in the op verifier instead. if (loop.lowerBound().empty()) return failure(); // Static is the default. auto schedule = loop.schedule_val().value_or(omp::ClauseScheduleKind::Static); // Find the loop configuration. llvm::Value *step = moduleTranslation.lookupValue(loop.step()[0]); llvm::Type *ivType = step->getType(); llvm::Value *chunk = nullptr; if (loop.schedule_chunk_var()) { llvm::Value *chunkVar = moduleTranslation.lookupValue(loop.schedule_chunk_var()); chunk = builder.CreateSExtOrTrunc(chunkVar, ivType); } SmallVector reductionDecls; collectReductionDecls(loop, reductionDecls); llvm::OpenMPIRBuilder::InsertPointTy allocaIP = findAllocaInsertPoint(builder, moduleTranslation); // Allocate space for privatized reduction variables. SmallVector privateReductionVariables; DenseMap reductionVariableMap; unsigned numReductions = loop.getNumReductionVars(); privateReductionVariables.reserve(numReductions); if (numReductions != 0) { llvm::IRBuilderBase::InsertPointGuard guard(builder); builder.restoreIP(allocaIP); for (unsigned i = 0; i < numReductions; ++i) { auto reductionType = loop.reduction_vars()[i].getType().cast(); llvm::Value *var = builder.CreateAlloca( moduleTranslation.convertType(reductionType.getElementType())); privateReductionVariables.push_back(var); reductionVariableMap.try_emplace(loop.reduction_vars()[i], var); } } // Store the mapping between reduction variables and their private copies on // ModuleTranslation stack. It can be then recovered when translating // omp.reduce operations in a separate call. LLVM::ModuleTranslation::SaveStack mappingGuard( moduleTranslation, reductionVariableMap); // Before the loop, store the initial values of reductions into reduction // variables. Although this could be done after allocas, we don't want to mess // up with the alloca insertion point. for (unsigned i = 0; i < numReductions; ++i) { SmallVector phis; if (failed(inlineConvertOmpRegions(reductionDecls[i].initializerRegion(), "omp.reduction.neutral", builder, moduleTranslation, &phis))) return failure(); assert(phis.size() == 1 && "expected one value to be yielded from the " "reduction neutral element declaration region"); builder.CreateStore(phis[0], privateReductionVariables[i]); } // Set up the source location value for OpenMP runtime. llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); // Generator of the canonical loop body. // TODO: support error propagation in OpenMPIRBuilder and use it instead of // relying on captured variables. SmallVector loopInfos; SmallVector bodyInsertPoints; LogicalResult bodyGenStatus = success(); auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip, llvm::Value *iv) { // Make sure further conversions know about the induction variable. moduleTranslation.mapValue( loop.getRegion().front().getArgument(loopInfos.size()), iv); // Capture the body insertion point for use in nested loops. BodyIP of the // CanonicalLoopInfo always points to the beginning of the entry block of // the body. bodyInsertPoints.push_back(ip); if (loopInfos.size() != loop.getNumLoops() - 1) return; // Convert the body of the loop. builder.restoreIP(ip); convertOmpOpRegions(loop.region(), "omp.wsloop.region", builder, moduleTranslation, bodyGenStatus); }; // Delegate actual loop construction to the OpenMP IRBuilder. // TODO: this currently assumes WsLoop is semantically similar to SCF loop, // i.e. it has a positive step, uses signed integer semantics. Reconsider // this code when WsLoop clearly supports more cases. llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder(); for (unsigned i = 0, e = loop.getNumLoops(); i < e; ++i) { llvm::Value *lowerBound = moduleTranslation.lookupValue(loop.lowerBound()[i]); llvm::Value *upperBound = moduleTranslation.lookupValue(loop.upperBound()[i]); llvm::Value *step = moduleTranslation.lookupValue(loop.step()[i]); // Make sure loop trip count are emitted in the preheader of the outermost // loop at the latest so that they are all available for the new collapsed // loop will be created below. llvm::OpenMPIRBuilder::LocationDescription loc = ompLoc; llvm::OpenMPIRBuilder::InsertPointTy computeIP = ompLoc.IP; if (i != 0) { loc = llvm::OpenMPIRBuilder::LocationDescription(bodyInsertPoints.back()); computeIP = loopInfos.front()->getPreheaderIP(); } loopInfos.push_back(ompBuilder->createCanonicalLoop( loc, bodyGen, lowerBound, upperBound, step, /*IsSigned=*/true, loop.inclusive(), computeIP)); if (failed(bodyGenStatus)) return failure(); } // Collapse loops. Store the insertion point because LoopInfos may get // invalidated. llvm::IRBuilderBase::InsertPoint afterIP = loopInfos.front()->getAfterIP(); llvm::CanonicalLoopInfo *loopInfo = ompBuilder->collapseLoops(ompLoc.DL, loopInfos, {}); allocaIP = findAllocaInsertPoint(builder, moduleTranslation); // TODO: Handle doacross loops when the ordered clause has a parameter. bool isOrdered = loop.ordered_val().has_value(); Optional scheduleModifier = loop.schedule_modifier(); bool isSimd = loop.simd_modifier(); ompBuilder->applyWorkshareLoop( ompLoc.DL, loopInfo, allocaIP, !loop.nowait(), convertToScheduleKind(schedule), chunk, isSimd, scheduleModifier == omp::ScheduleModifier::monotonic, scheduleModifier == omp::ScheduleModifier::nonmonotonic, isOrdered); // Continue building IR after the loop. Note that the LoopInfo returned by // `collapseLoops` points inside the outermost loop and is intended for // potential further loop transformations. Use the insertion point stored // before collapsing loops instead. builder.restoreIP(afterIP); // Process the reductions if required. if (numReductions == 0) return success(); // Create the reduction generators. We need to own them here because // ReductionInfo only accepts references to the generators. SmallVector owningReductionGens; SmallVector owningAtomicReductionGens; for (unsigned i = 0; i < numReductions; ++i) { owningReductionGens.push_back( makeReductionGen(reductionDecls[i], builder, moduleTranslation)); owningAtomicReductionGens.push_back( makeAtomicReductionGen(reductionDecls[i], builder, moduleTranslation)); } // Collect the reduction information. SmallVector reductionInfos; reductionInfos.reserve(numReductions); for (unsigned i = 0; i < numReductions; ++i) { llvm::OpenMPIRBuilder::AtomicReductionGenTy atomicGen = nullptr; if (owningAtomicReductionGens[i]) atomicGen = owningAtomicReductionGens[i]; auto reductionType = loop.reduction_vars()[i].getType().cast(); llvm::Value *variable = moduleTranslation.lookupValue(loop.reduction_vars()[i]); reductionInfos.push_back( {moduleTranslation.convertType(reductionType.getElementType()), variable, privateReductionVariables[i], owningReductionGens[i], atomicGen}); } // The call to createReductions below expects the block to have a // terminator. Create an unreachable instruction to serve as terminator // and remove it later. llvm::UnreachableInst *tempTerminator = builder.CreateUnreachable(); builder.SetInsertPoint(tempTerminator); llvm::OpenMPIRBuilder::InsertPointTy contInsertPoint = ompBuilder->createReductions(builder.saveIP(), allocaIP, reductionInfos, loop.nowait()); if (!contInsertPoint.getBlock()) return loop->emitOpError() << "failed to convert reductions"; auto nextInsertionPoint = ompBuilder->createBarrier(contInsertPoint, llvm::omp::OMPD_for); tempTerminator->eraseFromParent(); builder.restoreIP(nextInsertionPoint); return success(); } /// Converts an OpenMP simd loop into LLVM IR using OpenMPIRBuilder. static LogicalResult convertOmpSimdLoop(Operation &opInst, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { auto loop = cast(opInst); llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); // Generator of the canonical loop body. // TODO: support error propagation in OpenMPIRBuilder and use it instead of // relying on captured variables. SmallVector loopInfos; SmallVector bodyInsertPoints; LogicalResult bodyGenStatus = success(); // TODO: The code generation for if clause is not supported yet. if (loop.if_expr()) return failure(); auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip, llvm::Value *iv) { // Make sure further conversions know about the induction variable. moduleTranslation.mapValue( loop.getRegion().front().getArgument(loopInfos.size()), iv); // Capture the body insertion point for use in nested loops. BodyIP of the // CanonicalLoopInfo always points to the beginning of the entry block of // the body. bodyInsertPoints.push_back(ip); if (loopInfos.size() != loop.getNumLoops() - 1) return; // Convert the body of the loop. builder.restoreIP(ip); convertOmpOpRegions(loop.region(), "omp.simdloop.region", builder, moduleTranslation, bodyGenStatus); }; // Delegate actual loop construction to the OpenMP IRBuilder. // TODO: this currently assumes SimdLoop is semantically similar to SCF loop, // i.e. it has a positive step, uses signed integer semantics. Reconsider // this code when SimdLoop clearly supports more cases. llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder(); for (unsigned i = 0, e = loop.getNumLoops(); i < e; ++i) { llvm::Value *lowerBound = moduleTranslation.lookupValue(loop.lowerBound()[i]); llvm::Value *upperBound = moduleTranslation.lookupValue(loop.upperBound()[i]); llvm::Value *step = moduleTranslation.lookupValue(loop.step()[i]); // Make sure loop trip count are emitted in the preheader of the outermost // loop at the latest so that they are all available for the new collapsed // loop will be created below. llvm::OpenMPIRBuilder::LocationDescription loc = ompLoc; llvm::OpenMPIRBuilder::InsertPointTy computeIP = ompLoc.IP; if (i != 0) { loc = llvm::OpenMPIRBuilder::LocationDescription(bodyInsertPoints.back(), ompLoc.DL); computeIP = loopInfos.front()->getPreheaderIP(); } loopInfos.push_back(ompBuilder->createCanonicalLoop( loc, bodyGen, lowerBound, upperBound, step, /*IsSigned=*/true, /*Inclusive=*/true, computeIP)); if (failed(bodyGenStatus)) return failure(); } // Collapse loops. llvm::IRBuilderBase::InsertPoint afterIP = loopInfos.front()->getAfterIP(); llvm::CanonicalLoopInfo *loopInfo = ompBuilder->collapseLoops(ompLoc.DL, loopInfos, {}); ompBuilder->applySimd(loopInfo, nullptr); builder.restoreIP(afterIP); return success(); } /// Convert an Atomic Ordering attribute to llvm::AtomicOrdering. llvm::AtomicOrdering convertAtomicOrdering(Optional ao) { if (!ao) return llvm::AtomicOrdering::Monotonic; // Default Memory Ordering switch (*ao) { case omp::ClauseMemoryOrderKind::Seq_cst: return llvm::AtomicOrdering::SequentiallyConsistent; case omp::ClauseMemoryOrderKind::Acq_rel: return llvm::AtomicOrdering::AcquireRelease; case omp::ClauseMemoryOrderKind::Acquire: return llvm::AtomicOrdering::Acquire; case omp::ClauseMemoryOrderKind::Release: return llvm::AtomicOrdering::Release; case omp::ClauseMemoryOrderKind::Relaxed: return llvm::AtomicOrdering::Monotonic; } llvm_unreachable("Unknown ClauseMemoryOrderKind kind"); } /// Convert omp.atomic.read operation to LLVM IR. static LogicalResult convertOmpAtomicRead(Operation &opInst, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { auto readOp = cast(opInst); llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder(); llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); llvm::AtomicOrdering AO = convertAtomicOrdering(readOp.memory_order_val()); llvm::Value *x = moduleTranslation.lookupValue(readOp.x()); Type xTy = readOp.x().getType().cast().getElementType(); llvm::Value *v = moduleTranslation.lookupValue(readOp.v()); Type vTy = readOp.v().getType().cast().getElementType(); llvm::OpenMPIRBuilder::AtomicOpValue V = { v, moduleTranslation.convertType(vTy), false, false}; llvm::OpenMPIRBuilder::AtomicOpValue X = { x, moduleTranslation.convertType(xTy), false, false}; builder.restoreIP(ompBuilder->createAtomicRead(ompLoc, X, V, AO)); return success(); } /// Converts an omp.atomic.write operation to LLVM IR. static LogicalResult convertOmpAtomicWrite(Operation &opInst, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { auto writeOp = cast(opInst); llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder(); llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); llvm::AtomicOrdering ao = convertAtomicOrdering(writeOp.memory_order_val()); llvm::Value *expr = moduleTranslation.lookupValue(writeOp.value()); llvm::Value *dest = moduleTranslation.lookupValue(writeOp.address()); llvm::Type *ty = moduleTranslation.convertType(writeOp.value().getType()); llvm::OpenMPIRBuilder::AtomicOpValue x = {dest, ty, /*isSigned=*/false, /*isVolatile=*/false}; builder.restoreIP(ompBuilder->createAtomicWrite(ompLoc, x, expr, ao)); return success(); } /// Converts an LLVM dialect binary operation to the corresponding enum value /// for `atomicrmw` supported binary operation. llvm::AtomicRMWInst::BinOp convertBinOpToAtomic(Operation &op) { return llvm::TypeSwitch(&op) .Case([&](LLVM::AddOp) { return llvm::AtomicRMWInst::BinOp::Add; }) .Case([&](LLVM::SubOp) { return llvm::AtomicRMWInst::BinOp::Sub; }) .Case([&](LLVM::AndOp) { return llvm::AtomicRMWInst::BinOp::And; }) .Case([&](LLVM::OrOp) { return llvm::AtomicRMWInst::BinOp::Or; }) .Case([&](LLVM::XOrOp) { return llvm::AtomicRMWInst::BinOp::Xor; }) .Case([&](LLVM::UMaxOp) { return llvm::AtomicRMWInst::BinOp::UMax; }) .Case([&](LLVM::UMinOp) { return llvm::AtomicRMWInst::BinOp::UMin; }) .Case([&](LLVM::FAddOp) { return llvm::AtomicRMWInst::BinOp::FAdd; }) .Case([&](LLVM::FSubOp) { return llvm::AtomicRMWInst::BinOp::FSub; }) .Default(llvm::AtomicRMWInst::BinOp::BAD_BINOP); } /// Converts an OpenMP atomic update operation using OpenMPIRBuilder. static LogicalResult convertOmpAtomicUpdate(omp::AtomicUpdateOp &opInst, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder(); // Convert values and types. auto &innerOpList = opInst.region().front().getOperations(); if (innerOpList.size() != 2) return opInst.emitError("exactly two operations are allowed inside an " "atomic update region while lowering to LLVM IR"); Operation &innerUpdateOp = innerOpList.front(); if (innerUpdateOp.getNumOperands() != 2 || !llvm::is_contained(innerUpdateOp.getOperands(), opInst.getRegion().getArgument(0))) return opInst.emitError( "the update operation inside the region must be a binary operation and " "that update operation must have the region argument as an operand"); llvm::AtomicRMWInst::BinOp binop = convertBinOpToAtomic(innerUpdateOp); bool isXBinopExpr = innerUpdateOp.getNumOperands() > 0 && innerUpdateOp.getOperand(0) == opInst.getRegion().getArgument(0); mlir::Value mlirExpr = (isXBinopExpr ? innerUpdateOp.getOperand(1) : innerUpdateOp.getOperand(0)); llvm::Value *llvmExpr = moduleTranslation.lookupValue(mlirExpr); llvm::Value *llvmX = moduleTranslation.lookupValue(opInst.x()); LLVM::LLVMPointerType mlirXType = opInst.x().getType().cast(); llvm::Type *llvmXElementType = moduleTranslation.convertType(mlirXType.getElementType()); llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType, /*isSigned=*/false, /*isVolatile=*/false}; llvm::AtomicOrdering atomicOrdering = convertAtomicOrdering(opInst.memory_order_val()); // Generate update code. LogicalResult updateGenStatus = success(); auto updateFn = [&opInst, &moduleTranslation, &updateGenStatus]( llvm::Value *atomicx, llvm::IRBuilder<> &builder) -> llvm::Value * { Block &bb = *opInst.region().begin(); moduleTranslation.mapValue(*opInst.region().args_begin(), atomicx); moduleTranslation.mapBlock(&bb, builder.GetInsertBlock()); if (failed(moduleTranslation.convertBlock(bb, true, builder))) { updateGenStatus = (opInst.emitError() << "unable to convert update operation to llvm IR"); return nullptr; } omp::YieldOp yieldop = dyn_cast(bb.getTerminator()); assert(yieldop && yieldop.results().size() == 1 && "terminator must be omp.yield op and it must have exactly one " "argument"); return moduleTranslation.lookupValue(yieldop.results()[0]); }; // Handle ambiguous alloca, if any. auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation); llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); builder.restoreIP(ompBuilder->createAtomicUpdate( ompLoc, allocaIP, llvmAtomicX, llvmExpr, atomicOrdering, binop, updateFn, isXBinopExpr)); return updateGenStatus; } static LogicalResult convertOmpAtomicCapture(omp::AtomicCaptureOp atomicCaptureOp, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder(); mlir::Value mlirExpr; bool isXBinopExpr = false, isPostfixUpdate = false; llvm::AtomicRMWInst::BinOp binop = llvm::AtomicRMWInst::BinOp::BAD_BINOP; omp::AtomicUpdateOp atomicUpdateOp = atomicCaptureOp.getAtomicUpdateOp(); omp::AtomicWriteOp atomicWriteOp = atomicCaptureOp.getAtomicWriteOp(); assert((atomicUpdateOp || atomicWriteOp) && "internal op must be an atomic.update or atomic.write op"); if (atomicWriteOp) { isPostfixUpdate = true; mlirExpr = atomicWriteOp.value(); } else { isPostfixUpdate = atomicCaptureOp.getSecondOp() == atomicCaptureOp.getAtomicUpdateOp().getOperation(); auto &innerOpList = atomicUpdateOp.region().front().getOperations(); if (innerOpList.size() != 2) return atomicUpdateOp.emitError( "exactly two operations are allowed inside an " "atomic update region while lowering to LLVM IR"); Operation *innerUpdateOp = atomicUpdateOp.getFirstOp(); if (innerUpdateOp->getNumOperands() != 2 || !llvm::is_contained(innerUpdateOp->getOperands(), atomicUpdateOp.getRegion().getArgument(0))) return atomicUpdateOp.emitError( "the update operation inside the region must be a binary operation " "and that update operation must have the region argument as an " "operand"); binop = convertBinOpToAtomic(*innerUpdateOp); isXBinopExpr = innerUpdateOp->getOperand(0) == atomicUpdateOp.getRegion().getArgument(0); mlirExpr = (isXBinopExpr ? innerUpdateOp->getOperand(1) : innerUpdateOp->getOperand(0)); } llvm::Value *llvmExpr = moduleTranslation.lookupValue(mlirExpr); llvm::Value *llvmX = moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().x()); llvm::Value *llvmV = moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().v()); auto mlirXType = atomicCaptureOp.getAtomicReadOp() .x() .getType() .cast(); llvm::Type *llvmXElementType = moduleTranslation.convertType(mlirXType.getElementType()); llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType, /*isSigned=*/false, /*isVolatile=*/false}; llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicV = {llvmV, llvmXElementType, /*isSigned=*/false, /*isVolatile=*/false}; llvm::AtomicOrdering atomicOrdering = convertAtomicOrdering(atomicCaptureOp.memory_order_val()); LogicalResult updateGenStatus = success(); auto updateFn = [&](llvm::Value *atomicx, llvm::IRBuilder<> &builder) -> llvm::Value * { if (atomicWriteOp) return moduleTranslation.lookupValue(atomicWriteOp.value()); Block &bb = *atomicUpdateOp.region().begin(); moduleTranslation.mapValue(*atomicUpdateOp.region().args_begin(), atomicx); moduleTranslation.mapBlock(&bb, builder.GetInsertBlock()); if (failed(moduleTranslation.convertBlock(bb, true, builder))) { updateGenStatus = (atomicUpdateOp.emitError() << "unable to convert update operation to llvm IR"); return nullptr; } omp::YieldOp yieldop = dyn_cast(bb.getTerminator()); assert(yieldop && yieldop.results().size() == 1 && "terminator must be omp.yield op and it must have exactly one " "argument"); return moduleTranslation.lookupValue(yieldop.results()[0]); }; // Handle ambiguous alloca, if any. auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation); llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); builder.restoreIP(ompBuilder->createAtomicCapture( ompLoc, allocaIP, llvmAtomicX, llvmAtomicV, llvmExpr, atomicOrdering, binop, updateFn, atomicUpdateOp, isPostfixUpdate, isXBinopExpr)); return updateGenStatus; } /// Converts an OpenMP reduction operation using OpenMPIRBuilder. Expects the /// mapping between reduction variables and their private equivalents to have /// been stored on the ModuleTranslation stack. Currently only supports /// reduction within WsLoopOp, but can be easily extended. static LogicalResult convertOmpReductionOp(omp::ReductionOp reductionOp, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { // Find the declaration that corresponds to the reduction op. auto reductionContainer = reductionOp->getParentOfType(); omp::ReductionDeclareOp declaration = findReductionDecl(reductionContainer, reductionOp); assert(declaration && "could not find reduction declaration"); // Retrieve the mapping between reduction variables and their private // equivalents. const DenseMap *reductionVariableMap = nullptr; moduleTranslation.stackWalk( [&](const OpenMPVarMappingStackFrame &frame) { reductionVariableMap = &frame.mapping; return WalkResult::interrupt(); }); assert(reductionVariableMap && "couldn't find private reduction variables"); // Translate the reduction operation by emitting the body of the corresponding // reduction declaration. Region &reductionRegion = declaration.reductionRegion(); llvm::Value *privateReductionVar = reductionVariableMap->lookup(reductionOp.accumulator()); llvm::Value *reductionVal = builder.CreateLoad( moduleTranslation.convertType(reductionOp.operand().getType()), privateReductionVar); moduleTranslation.mapValue(reductionRegion.front().getArgument(0), reductionVal); moduleTranslation.mapValue( reductionRegion.front().getArgument(1), moduleTranslation.lookupValue(reductionOp.operand())); SmallVector phis; if (failed(inlineConvertOmpRegions(reductionRegion, "omp.reduction.body", builder, moduleTranslation, &phis))) return failure(); assert(phis.size() == 1 && "expected one value to be yielded from " "the reduction body declaration region"); builder.CreateStore(phis[0], privateReductionVar); return success(); } /// Converts an OpenMP Threadprivate operation into LLVM IR using /// OpenMPIRBuilder. static LogicalResult convertOmpThreadprivate(Operation &opInst, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) { llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder); auto threadprivateOp = cast(opInst); Value symAddr = threadprivateOp.sym_addr(); auto *symOp = symAddr.getDefiningOp(); if (!isa(symOp)) return opInst.emitError("Addressing symbol not found"); LLVM::AddressOfOp addressOfOp = dyn_cast(symOp); LLVM::GlobalOp global = addressOfOp.getGlobal(); llvm::GlobalValue *globalValue = moduleTranslation.lookupGlobal(global); llvm::Value *data = builder.CreateBitCast(globalValue, builder.getInt8PtrTy()); llvm::Type *type = globalValue->getValueType(); llvm::TypeSize typeSize = builder.GetInsertBlock()->getModule()->getDataLayout().getTypeStoreSize( type); llvm::ConstantInt *size = builder.getInt64(typeSize.getFixedSize()); llvm::StringRef suffix = llvm::StringRef(".cache", 6); std::string cacheName = (Twine(global.getSymName()).concat(suffix)).str(); // Emit runtime function and bitcast its type (i8*) to real data type. llvm::Value *callInst = moduleTranslation.getOpenMPBuilder()->createCachedThreadPrivate( ompLoc, data, size, cacheName); llvm::Value *result = builder.CreateBitCast(callInst, globalValue->getType()); moduleTranslation.mapValue(opInst.getResult(0), result); return success(); } namespace { /// Implementation of the dialect interface that converts operations belonging /// to the OpenMP dialect to LLVM IR. class OpenMPDialectLLVMIRTranslationInterface : public LLVMTranslationDialectInterface { public: using LLVMTranslationDialectInterface::LLVMTranslationDialectInterface; /// Translates the given operation to LLVM IR using the provided IR builder /// and saving the state in `moduleTranslation`. LogicalResult convertOperation(Operation *op, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) const final; }; } // namespace /// Given an OpenMP MLIR operation, create the corresponding LLVM IR /// (including OpenMP runtime calls). LogicalResult OpenMPDialectLLVMIRTranslationInterface::convertOperation( Operation *op, llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation) const { llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder(); return llvm::TypeSwitch(op) .Case([&](omp::BarrierOp) { ompBuilder->createBarrier(builder.saveIP(), llvm::omp::OMPD_barrier); return success(); }) .Case([&](omp::TaskwaitOp) { ompBuilder->createTaskwait(builder.saveIP()); return success(); }) .Case([&](omp::TaskyieldOp) { ompBuilder->createTaskyield(builder.saveIP()); return success(); }) .Case([&](omp::FlushOp) { // No support in Openmp runtime function (__kmpc_flush) to accept // the argument list. // OpenMP standard states the following: // "An implementation may implement a flush with a list by ignoring // the list, and treating it the same as a flush without a list." // // The argument list is discarded so that, flush with a list is treated // same as a flush without a list. ompBuilder->createFlush(builder.saveIP()); return success(); }) .Case([&](omp::ParallelOp op) { return convertOmpParallel(op, builder, moduleTranslation); }) .Case([&](omp::ReductionOp reductionOp) { return convertOmpReductionOp(reductionOp, builder, moduleTranslation); }) .Case([&](omp::MasterOp) { return convertOmpMaster(*op, builder, moduleTranslation); }) .Case([&](omp::CriticalOp) { return convertOmpCritical(*op, builder, moduleTranslation); }) .Case([&](omp::OrderedRegionOp) { return convertOmpOrderedRegion(*op, builder, moduleTranslation); }) .Case([&](omp::OrderedOp) { return convertOmpOrdered(*op, builder, moduleTranslation); }) .Case([&](omp::WsLoopOp) { return convertOmpWsLoop(*op, builder, moduleTranslation); }) .Case([&](omp::SimdLoopOp) { return convertOmpSimdLoop(*op, builder, moduleTranslation); }) .Case([&](omp::AtomicReadOp) { return convertOmpAtomicRead(*op, builder, moduleTranslation); }) .Case([&](omp::AtomicWriteOp) { return convertOmpAtomicWrite(*op, builder, moduleTranslation); }) .Case([&](omp::AtomicUpdateOp op) { return convertOmpAtomicUpdate(op, builder, moduleTranslation); }) .Case([&](omp::AtomicCaptureOp op) { return convertOmpAtomicCapture(op, builder, moduleTranslation); }) .Case([&](omp::SectionsOp) { return convertOmpSections(*op, builder, moduleTranslation); }) .Case([&](omp::SingleOp op) { return convertOmpSingle(op, builder, moduleTranslation); }) .Case([&](omp::TaskOp op) { return convertOmpTaskOp(op, builder, moduleTranslation); }) .Case([](auto op) { // `yield` and `terminator` can be just omitted. The block structure // was created in the region that handles their parent operation. // `reduction.declare` will be used by reductions and is not // converted directly, skip it. // `critical.declare` is only used to declare names of critical // sections which will be used by `critical` ops and hence can be // ignored for lowering. The OpenMP IRBuilder will create unique // name for critical section names. return success(); }) .Case([&](omp::ThreadprivateOp) { return convertOmpThreadprivate(*op, builder, moduleTranslation); }) .Default([&](Operation *inst) { return inst->emitError("unsupported OpenMP operation: ") << inst->getName(); }); } void mlir::registerOpenMPDialectTranslation(DialectRegistry ®istry) { registry.insert(); registry.addExtension(+[](MLIRContext *ctx, omp::OpenMPDialect *dialect) { dialect->addInterfaces(); }); } void mlir::registerOpenMPDialectTranslation(MLIRContext &context) { DialectRegistry registry; registerOpenMPDialectTranslation(registry); context.appendDialectRegistry(registry); }