//===- VectorTransforms.cpp - Conversion within the Vector dialect --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements target-independent rewrites as 1->N patterns. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" #include #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/SCF.h" #include "mlir/Dialect/Utils/StructuredOpsUtils.h" #include "mlir/Dialect/Vector/Utils/VectorUtils.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Interfaces/VectorInterfaces.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "vector-to-vector" using namespace mlir; using namespace mlir::vector; // Helper to find an index in an affine map. static Optional getResultIndex(AffineMap map, int64_t index) { for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { int64_t idx = map.getDimPosition(i); if (idx == index) return i; } return None; } // Helper to construct iterator types with one index removed. static SmallVector adjustIter(ArrayAttr iteratorTypes, int64_t index) { SmallVector results; for (const auto &it : llvm::enumerate(iteratorTypes)) { int64_t idx = it.index(); if (idx == index) continue; results.push_back(it.value()); } return results; } // Helper to construct an affine map with one index removed. static AffineMap adjustMap(AffineMap map, int64_t index, PatternRewriter &rewriter) { auto *ctx = rewriter.getContext(); SmallVector results; for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { int64_t idx = map.getDimPosition(i); if (idx == index) continue; // Re-insert remaining indices, but renamed when occurring // after the removed index. auto targetExpr = getAffineDimExpr(idx < index ? idx : idx - 1, ctx); results.push_back(targetExpr); } return AffineMap::get(map.getNumDims() - 1, 0, results, ctx); } // Helper method to possibly drop a dimension in a load. // TODO static Value reshapeLoad(Location loc, Value val, VectorType type, int64_t index, int64_t pos, PatternRewriter &rewriter) { if (index == -1) return val; Type lowType = VectorType::Builder(type).dropDim(0); // At extraction dimension? if (index == 0) { auto posAttr = rewriter.getI64ArrayAttr(pos); return rewriter.create(loc, lowType, val, posAttr); } // Unroll leading dimensions. VectorType vType = lowType.cast(); Type resType = VectorType::Builder(type).dropDim(index); auto resVectorType = resType.cast(); Value result = rewriter.create( loc, resVectorType, rewriter.getZeroAttr(resVectorType)); for (int64_t d = 0, e = resVectorType.getDimSize(0); d < e; d++) { auto posAttr = rewriter.getI64ArrayAttr(d); Value ext = rewriter.create(loc, vType, val, posAttr); Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter); result = rewriter.create(loc, resVectorType, load, result, posAttr); } return result; } // Helper method to possibly drop a dimension in a store. // TODO static Value reshapeStore(Location loc, Value val, Value result, VectorType type, int64_t index, int64_t pos, PatternRewriter &rewriter) { // Unmodified? if (index == -1) return val; // At insertion dimension? if (index == 0) { auto posAttr = rewriter.getI64ArrayAttr(pos); return rewriter.create(loc, type, val, result, posAttr); } // Unroll leading dimensions. Type lowType = VectorType::Builder(type).dropDim(0); VectorType vType = lowType.cast(); Type insType = VectorType::Builder(vType).dropDim(0); for (int64_t d = 0, e = type.getDimSize(0); d < e; d++) { auto posAttr = rewriter.getI64ArrayAttr(d); Value ext = rewriter.create(loc, vType, result, posAttr); Value ins = rewriter.create(loc, insType, val, posAttr); Value sto = reshapeStore(loc, ins, ext, vType, index - 1, pos, rewriter); result = rewriter.create(loc, type, sto, result, posAttr); } return result; } template static SmallVector extractVector(ArrayAttr arrayAttr) { return llvm::to_vector<4>(llvm::map_range( arrayAttr.getAsRange(), [](IntegerAttr attr) { return static_cast(attr.getInt()); })); } namespace { /// ShapeCastOpFolder folds cancelling ShapeCastOps away. // // Example: // // The following MLIR with cancelling ShapeCastOps: // // %0 = source : vector<5x4x2xf32> // %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32> // %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32> // %3 = user %2 : vector<5x4x2xf32> // // Should canonicalize to the following: // // %0 = source : vector<5x4x2xf32> // %1 = user %0 : vector<5x4x2xf32> // struct ShapeCastOpFolder : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp, PatternRewriter &rewriter) const override { // Check if 'shapeCastOp' has vector source/result type. auto sourceVectorType = shapeCastOp.source().getType().dyn_cast_or_null(); auto resultVectorType = shapeCastOp.result().getType().dyn_cast_or_null(); if (!sourceVectorType || !resultVectorType) return failure(); // Check if shape cast op source operand is also a shape cast op. auto sourceShapeCastOp = dyn_cast_or_null( shapeCastOp.source().getDefiningOp()); if (!sourceShapeCastOp) return failure(); auto operandSourceVectorType = sourceShapeCastOp.source().getType().cast(); auto operandResultVectorType = sourceShapeCastOp.getType(); // Check if shape cast operations invert each other. if (operandSourceVectorType != resultVectorType || operandResultVectorType != sourceVectorType) return failure(); rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.source()); return success(); } }; /// Progressive lowering of BroadcastOp. class BroadcastOpLowering : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::BroadcastOp op, PatternRewriter &rewriter) const override { auto loc = op.getLoc(); VectorType dstType = op.getVectorType(); VectorType srcType = op.getSourceType().dyn_cast(); Type eltType = dstType.getElementType(); // Scalar to any vector can use splat. if (!srcType) { rewriter.replaceOpWithNewOp(op, dstType, op.source()); return success(); } // Determine rank of source and destination. int64_t srcRank = srcType.getRank(); int64_t dstRank = dstType.getRank(); // Stretching scalar inside vector (e.g. vector<1xf32>) can use splat. if (srcRank <= 1 && dstRank == 1) { Value ext; if (srcRank == 0) ext = rewriter.create(loc, op.source()); else ext = rewriter.create(loc, op.source(), 0); rewriter.replaceOpWithNewOp(op, dstType, ext); return success(); } // Duplicate this rank. // For example: // %x = broadcast %y : k-D to n-D, k < n // becomes: // %b = broadcast %y : k-D to (n-1)-D // %x = [%b,%b,%b,%b] : n-D // becomes: // %b = [%y,%y] : (n-1)-D // %x = [%b,%b,%b,%b] : n-D if (srcRank < dstRank) { // Duplication. VectorType resType = VectorType::get(dstType.getShape().drop_front(), eltType); Value bcst = rewriter.create(loc, resType, op.source()); Value result = rewriter.create( loc, dstType, rewriter.getZeroAttr(dstType)); for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) result = rewriter.create(loc, bcst, result, d); rewriter.replaceOp(op, result); return success(); } // Find non-matching dimension, if any. assert(srcRank == dstRank); int64_t m = -1; for (int64_t r = 0; r < dstRank; r++) if (srcType.getDimSize(r) != dstType.getDimSize(r)) { m = r; break; } // All trailing dimensions are the same. Simply pass through. if (m == -1) { rewriter.replaceOp(op, op.source()); return success(); } // Any non-matching dimension forces a stretch along this rank. // For example: // %x = broadcast %y : vector<4x1x2xf32> to vector<4x2x2xf32> // becomes: // %a = broadcast %y[0] : vector<1x2xf32> to vector<2x2xf32> // %b = broadcast %y[1] : vector<1x2xf32> to vector<2x2xf32> // %c = broadcast %y[2] : vector<1x2xf32> to vector<2x2xf32> // %d = broadcast %y[3] : vector<1x2xf32> to vector<2x2xf32> // %x = [%a,%b,%c,%d] // becomes: // %u = broadcast %y[0][0] : vector<2xf32> to vector <2x2xf32> // %v = broadcast %y[1][0] : vector<2xf32> to vector <2x2xf32> // %a = [%u, %v] // .. // %x = [%a,%b,%c,%d] VectorType resType = VectorType::get(dstType.getShape().drop_front(), eltType); Value result = rewriter.create( loc, dstType, rewriter.getZeroAttr(dstType)); if (m == 0) { // Stetch at start. Value ext = rewriter.create(loc, op.source(), 0); Value bcst = rewriter.create(loc, resType, ext); for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) result = rewriter.create(loc, bcst, result, d); } else { // Stetch not at start. for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) { Value ext = rewriter.create(loc, op.source(), d); Value bcst = rewriter.create(loc, resType, ext); result = rewriter.create(loc, bcst, result, d); } } rewriter.replaceOp(op, result); return success(); } }; /// Progressive lowering of TransposeOp. /// One: /// %x = vector.transpose %y, [1, 0] /// is replaced by: /// %z = arith.constant dense<0.000000e+00> /// %0 = vector.extract %y[0, 0] /// %1 = vector.insert %0, %z [0, 0] /// .. /// %x = vector.insert .., .. [.., ..] class TransposeOpLowering : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; TransposeOpLowering(vector::VectorTransformsOptions vectorTransformOptions, MLIRContext *context) : OpRewritePattern(context), vectorTransformOptions(vectorTransformOptions) {} LogicalResult matchAndRewrite(vector::TransposeOp op, PatternRewriter &rewriter) const override { auto loc = op.getLoc(); VectorType resType = op.getResultType(); // Set up convenience transposition table. SmallVector transp; for (auto attr : op.transp()) transp.push_back(attr.cast().getInt()); if (vectorTransformOptions.vectorTransposeLowering == vector::VectorTransposeLowering::Shuffle && resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) return rewriter.notifyMatchFailure( op, "Options specifies lowering to shuffle"); // Handle a true 2-D matrix transpose differently when requested. if (vectorTransformOptions.vectorTransposeLowering == vector::VectorTransposeLowering::Flat && resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) { Type flattenedType = VectorType::get(resType.getNumElements(), resType.getElementType()); auto matrix = rewriter.create(loc, flattenedType, op.vector()); auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]); auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]); Value trans = rewriter.create( loc, flattenedType, matrix, rows, columns); rewriter.replaceOpWithNewOp(op, resType, trans); return success(); } // Generate fully unrolled extract/insert ops. Value result = rewriter.create( loc, resType, rewriter.getZeroAttr(resType)); SmallVector lhs(transp.size(), 0); SmallVector rhs(transp.size(), 0); rewriter.replaceOp(op, expandIndices(loc, resType, 0, transp, lhs, rhs, op.vector(), result, rewriter)); return success(); } private: // Builds the indices arrays for the lhs and rhs. Generates the extract/insert // operation when al ranks are exhausted. Value expandIndices(Location loc, VectorType resType, int64_t pos, SmallVector &transp, SmallVector &lhs, SmallVector &rhs, Value input, Value result, PatternRewriter &rewriter) const { if (pos >= resType.getRank()) { auto ridx = rewriter.getI64ArrayAttr(rhs); auto lidx = rewriter.getI64ArrayAttr(lhs); Type eltType = resType.getElementType(); Value e = rewriter.create(loc, eltType, input, ridx); return rewriter.create(loc, resType, e, result, lidx); } for (int64_t d = 0, e = resType.getDimSize(pos); d < e; ++d) { lhs[pos] = d; rhs[transp[pos]] = d; result = expandIndices(loc, resType, pos + 1, transp, lhs, rhs, input, result, rewriter); } return result; } /// Options to control the vector patterns. vector::VectorTransformsOptions vectorTransformOptions; }; /// Rewrite a 2-D vector.transpose as a sequence of: /// vector.shape_cast 2D -> 1D /// vector.shuffle /// vector.shape_cast 1D -> 2D class TransposeOp2DToShuffleLowering : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; TransposeOp2DToShuffleLowering( vector::VectorTransformsOptions vectorTransformOptions, MLIRContext *context) : OpRewritePattern(context), vectorTransformOptions(vectorTransformOptions) {} LogicalResult matchAndRewrite(vector::TransposeOp op, PatternRewriter &rewriter) const override { auto loc = op.getLoc(); VectorType srcType = op.getVectorType(); if (srcType.getRank() != 2) return rewriter.notifyMatchFailure(op, "Not a 2D transpose"); SmallVector transp; for (auto attr : op.transp()) transp.push_back(attr.cast().getInt()); if (transp[0] != 1 && transp[1] != 0) return rewriter.notifyMatchFailure(op, "Not a 2D transpose permutation"); if (vectorTransformOptions.vectorTransposeLowering != VectorTransposeLowering::Shuffle) return rewriter.notifyMatchFailure(op, "Options do not ask for Shuffle"); int64_t m = srcType.getShape().front(), n = srcType.getShape().back(); Value casted = rewriter.create( loc, VectorType::get({m * n}, srcType.getElementType()), op.vector()); SmallVector mask; mask.reserve(m * n); for (int64_t j = 0; j < n; ++j) for (int64_t i = 0; i < m; ++i) mask.push_back(i * n + j); Value shuffled = rewriter.create(loc, casted, casted, mask); rewriter.replaceOpWithNewOp(op, op.getResultType(), shuffled); return success(); } private: /// Options to control the vector patterns. vector::VectorTransformsOptions vectorTransformOptions; }; /// Progressive lowering of OuterProductOp. /// One: /// %x = vector.outerproduct %lhs, %rhs, %acc /// is replaced by: /// %z = zero-result /// %0 = vector.extract %lhs[0] /// %1 = vector.broadcast %0 /// %2 = vector.extract %acc[0] /// %3 = vector.fma %1, %rhs, %2 /// %4 = vector.insert %3, %z[0] /// .. /// %x = vector.insert %.., %..[N-1] /// class OuterProductOpLowering : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::OuterProductOp op, PatternRewriter &rewriter) const override { auto loc = op.getLoc(); VectorType lhsType = op.getOperandVectorTypeLHS(); VectorType rhsType = op.getOperandTypeRHS().dyn_cast(); VectorType resType = op.getVectorType(); Type eltType = resType.getElementType(); bool isInt = eltType.isa(); Value acc = (op.acc().empty()) ? nullptr : op.acc()[0]; vector::CombiningKind kind = op.kind(); if (!rhsType) { // Special case: AXPY operation. Value b = rewriter.create(loc, lhsType, op.rhs()); Optional mult = isInt ? genMultI(loc, op.lhs(), b, acc, kind, rewriter) : genMultF(loc, op.lhs(), b, acc, kind, rewriter); if (!mult.hasValue()) return failure(); rewriter.replaceOp(op, mult.getValue()); return success(); } Value result = rewriter.create( loc, resType, rewriter.getZeroAttr(resType)); for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) { auto pos = rewriter.getI64ArrayAttr(d); Value x = rewriter.create(loc, eltType, op.lhs(), pos); Value a = rewriter.create(loc, rhsType, x); Value r = nullptr; if (acc) r = rewriter.create(loc, rhsType, acc, pos); Optional m = isInt ? genMultI(loc, a, op.rhs(), r, kind, rewriter) : genMultF(loc, a, op.rhs(), r, kind, rewriter); if (!m.hasValue()) return failure(); result = rewriter.create(loc, resType, m.getValue(), result, pos); } rewriter.replaceOp(op, result); return success(); } private: static Optional genMultI(Location loc, Value x, Value y, Value acc, vector::CombiningKind kind, PatternRewriter &rewriter) { using vector::CombiningKind; auto mul = rewriter.create(loc, x, y); if (!acc) return Optional(mul); if (kind == CombiningKind::MINF || kind == CombiningKind::MAXF) // Only valid for floating point types. return Optional(); return makeArithReduction(rewriter, loc, kind, mul, acc); } static Optional genMultF(Location loc, Value x, Value y, Value acc, vector::CombiningKind kind, PatternRewriter &rewriter) { using vector::CombiningKind; // Special case for fused multiply-add. if (acc && kind == CombiningKind::ADD) { return Optional(rewriter.create(loc, x, y, acc)); } auto mul = rewriter.create(loc, x, y); if (!acc) return Optional(mul); if (kind == CombiningKind::ADD || kind == CombiningKind::AND || kind == CombiningKind::MINUI || kind == CombiningKind::MINSI || kind == CombiningKind::MAXUI || kind == CombiningKind::MAXSI || kind == CombiningKind::OR || kind == CombiningKind::XOR) // Already handled or only valid for integer types. return Optional(); return makeArithReduction(rewriter, loc, kind, mul, acc); } }; /// Progressive lowering of ConstantMaskOp. /// One: /// %x = vector.constant_mask [a,b] /// is replaced by: /// %z = zero-result /// %l = vector.constant_mask [b] /// %4 = vector.insert %l, %z[0] /// .. /// %x = vector.insert %l, %..[a-1] /// until a one-dimensional vector is reached. All these operations /// will be folded at LLVM IR level. class ConstantMaskOpLowering : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ConstantMaskOp op, PatternRewriter &rewriter) const override { auto loc = op.getLoc(); auto dstType = op.getType(); auto eltType = dstType.getElementType(); auto dimSizes = op.mask_dim_sizes(); int64_t rank = dstType.getRank(); if (rank == 0) { assert(dimSizes.size() == 1 && "Expected exactly one dim size for a 0-D vector"); bool value = dimSizes[0].cast().getInt() == 1; rewriter.replaceOpWithNewOp( op, dstType, DenseIntElementsAttr::get( VectorType::get(ArrayRef{}, rewriter.getI1Type()), ArrayRef{value})); return success(); } int64_t trueDim = std::min(dstType.getDimSize(0), dimSizes[0].cast().getInt()); if (rank == 1) { // Express constant 1-D case in explicit vector form: // [T,..,T,F,..,F]. SmallVector values(dstType.getDimSize(0)); for (int64_t d = 0; d < trueDim; d++) values[d] = true; rewriter.replaceOpWithNewOp( op, dstType, rewriter.getBoolVectorAttr(values)); return success(); } VectorType lowType = VectorType::get(dstType.getShape().drop_front(), eltType); SmallVector newDimSizes; for (int64_t r = 1; r < rank; r++) newDimSizes.push_back(dimSizes[r].cast().getInt()); Value trueVal = rewriter.create( loc, lowType, rewriter.getI64ArrayAttr(newDimSizes)); Value result = rewriter.create( loc, dstType, rewriter.getZeroAttr(dstType)); for (int64_t d = 0; d < trueDim; d++) { auto pos = rewriter.getI64ArrayAttr(d); result = rewriter.create(loc, dstType, trueVal, result, pos); } rewriter.replaceOp(op, result); return success(); } }; /// Progressive lowering of CreateMaskOp. /// One: /// %x = vector.create_mask %a, ... : vector /// is replaced by: /// %l = vector.create_mask ... : vector<...> ; one lower rank /// %0 = arith.cmpi "slt", %ci, %a | /// %1 = select %0, %l, %zeroes | /// %r = vector.insert %1, %pr [i] | d-times /// %x = .... /// until a one-dimensional vector is reached. class CreateMaskOpLowering : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::CreateMaskOp op, PatternRewriter &rewriter) const override { auto dstType = op.getResult().getType().cast(); int64_t rank = dstType.getRank(); if (rank <= 1) return rewriter.notifyMatchFailure( op, "0-D and 1-D vectors are handled separately"); auto loc = op.getLoc(); auto eltType = dstType.getElementType(); int64_t dim = dstType.getDimSize(0); Value idx = op.getOperand(0); VectorType lowType = VectorType::get(dstType.getShape().drop_front(), eltType); Value trueVal = rewriter.create( loc, lowType, op.getOperands().drop_front()); Value falseVal = rewriter.create( loc, lowType, rewriter.getZeroAttr(lowType)); Value result = rewriter.create( loc, dstType, rewriter.getZeroAttr(dstType)); for (int64_t d = 0; d < dim; d++) { Value bnd = rewriter.create(loc, rewriter.getIndexAttr(d)); Value val = rewriter.create(loc, arith::CmpIPredicate::slt, bnd, idx); Value sel = rewriter.create(loc, val, trueVal, falseVal); auto pos = rewriter.getI64ArrayAttr(d); result = rewriter.create(loc, dstType, sel, result, pos); } rewriter.replaceOp(op, result); return success(); } }; /// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D /// vectors progressively on the way to target llvm.matrix intrinsics. /// This iterates over the most major dimension of the 2-D vector and performs /// rewrites into: /// vector.extract from 2-D + vector.insert_strided_slice offset into 1-D class ShapeCastOp2DDownCastRewritePattern : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ShapeCastOp op, PatternRewriter &rewriter) const override { auto sourceVectorType = op.getSourceVectorType(); auto resultVectorType = op.getResultVectorType(); if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1) return failure(); auto loc = op.getLoc(); Value desc = rewriter.create( loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); unsigned mostMinorVectorSize = sourceVectorType.getShape()[1]; for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) { Value vec = rewriter.create(loc, op.source(), i); desc = rewriter.create( loc, vec, desc, /*offsets=*/i * mostMinorVectorSize, /*strides=*/1); } rewriter.replaceOp(op, desc); return success(); } }; /// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D /// vectors progressively. /// This iterates over the most major dimension of the 2-D vector and performs /// rewrites into: /// vector.extract_strided_slice from 1-D + vector.insert into 2-D /// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle. class ShapeCastOp2DUpCastRewritePattern : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ShapeCastOp op, PatternRewriter &rewriter) const override { auto sourceVectorType = op.getSourceVectorType(); auto resultVectorType = op.getResultVectorType(); if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2) return failure(); auto loc = op.getLoc(); Value desc = rewriter.create( loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); unsigned mostMinorVectorSize = resultVectorType.getShape()[1]; for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) { Value vec = rewriter.create( loc, op.source(), /*offsets=*/i * mostMinorVectorSize, /*sizes=*/mostMinorVectorSize, /*strides=*/1); desc = rewriter.create(loc, vec, desc, i); } rewriter.replaceOp(op, desc); return success(); } }; // We typically should not lower general shape cast operations into data // movement instructions, since the assumption is that these casts are // optimized away during progressive lowering. For completeness, however, // we fall back to a reference implementation that moves all elements // into the right place if we get here. class ShapeCastOpRewritePattern : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ShapeCastOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); auto sourceVectorType = op.getSourceVectorType(); auto resultVectorType = op.getResultVectorType(); // Special case 2D/1D lowerings with better implementations. // TODO: make is ND/1D to allow generic ND->1D->MD. int64_t srcRank = sourceVectorType.getRank(); int64_t resRank = resultVectorType.getRank(); if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2)) return failure(); // Generic ShapeCast lowering path goes all the way down to unrolled scalar // extract/insert chains. // TODO: consider evolving the semantics to only allow 1D source or dest and // drop this potentially very expensive lowering. // Compute number of elements involved in the reshape. int64_t numElts = 1; for (int64_t r = 0; r < srcRank; r++) numElts *= sourceVectorType.getDimSize(r); // Replace with data movement operations: // x[0,0,0] = y[0,0] // x[0,0,1] = y[0,1] // x[0,1,0] = y[0,2] // etc., incrementing the two index vectors "row-major" // within the source and result shape. SmallVector srcIdx(srcRank); SmallVector resIdx(resRank); Value result = rewriter.create( loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); for (int64_t i = 0; i < numElts; i++) { if (i != 0) { incIdx(srcIdx, sourceVectorType, srcRank - 1); incIdx(resIdx, resultVectorType, resRank - 1); } Value e = rewriter.create(loc, op.source(), srcIdx); result = rewriter.create(loc, e, result, resIdx); } rewriter.replaceOp(op, result); return success(); } private: static void incIdx(SmallVector &idx, VectorType tp, int64_t r) { assert(0 <= r && r < tp.getRank()); if (++idx[r] == tp.getDimSize(r)) { idx[r] = 0; incIdx(idx, tp, r - 1); } } }; /// Convert MulIOp/MulFOp + MultiDimReductionOp into ContractionOp. /// Ex: /// ``` /// %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32> /// %1 = vector.multi_reduction add, %0 [1] /// : vector<8x32x16xf32> to vector<8x16xf32> /// ``` /// Gets converted to: /// ``` /// %1 = vector.contract {indexing_maps = [ /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, /// affine_map<(d0, d1, d2) -> (d0, d1)>], /// iterator_types = ["parallel", "parallel", "reduction"], /// kind = add} %0, %arg1, %cst_f0 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> /// ``` struct MultiReduceToContract : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp, PatternRewriter &rewriter) const override { if (reduceOp.kind() != vector::CombiningKind::ADD) return failure(); Operation *mulOp = reduceOp.source().getDefiningOp(); if (!mulOp || !isa(mulOp)) return failure(); SmallVector reductionMask = reduceOp.getReductionMask(); auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size()); SmallVector exprs; SmallVector iteratorTypes; for (const auto &isReduceDim : llvm::enumerate(reductionMask)) { if (!isReduceDim.value()) { iteratorTypes.push_back(getParallelIteratorTypeName()); exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index())); } else { iteratorTypes.push_back(getReductionIteratorTypeName()); } } auto dstMap = AffineMap::get(/*dimCount=*/reductionMask.size(), /*symCount=*/0, exprs, reduceOp.getContext()); Value zero = rewriter.create( reduceOp.getLoc(), reduceOp.getDestType(), rewriter.getZeroAttr(reduceOp.getDestType())); rewriter.replaceOpWithNewOp( reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), zero, rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}), rewriter.getStrArrayAttr(iteratorTypes)); return success(); } }; /// Merge TransposeOp into ContractionOp user. /// Ex: /// ``` /// %0 = vector.transpose %arg0, [2, 0, 1] /// : vector<32x16x8xf32> to vector<8x32x16xf32> /// %1 = vector.contract {indexing_maps = [ /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, /// affine_map<(d0, d1, d2) -> (d0, d1)>], /// iterator_types = ["parallel", "parallel", "reduction"], /// kind = add} %0, %arg1, %cst_f0 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> /// ``` /// Gets converted to: /// ``` /// %1 = vector.contract {indexing_maps = [ /// affine_map<(d0, d1, d2) -> (d1, d2, d0)>, /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, /// affine_map<(d0, d1, d2) -> (d0, d1)>], /// iterator_types = ["parallel", "parallel", "reduction"], /// kind = add} %arg0, %arg1, %cst_f0 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> /// ``` struct CombineContractTranspose : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ContractionOp contractOp, PatternRewriter &rewriter) const override { SmallVector maps = llvm::to_vector<4>(contractOp.getIndexingMaps()); Value lhs = contractOp.lhs(); Value rhs = contractOp.rhs(); size_t index = 0; bool changed = false; for (Value *operand : {&lhs, &rhs}) { AffineMap &map = maps[index++]; auto transposeOp = operand->getDefiningOp(); if (!transposeOp) continue; SmallVector perm; transposeOp.getTransp(perm); AffineMap permutationMap = AffineMap::getPermutationMap( extractVector(transposeOp.transp()), contractOp.getContext()); map = inversePermutation(permutationMap).compose(map); *operand = transposeOp.vector(); changed = true; } if (!changed) return failure(); rewriter.replaceOpWithNewOp( contractOp, lhs, rhs, contractOp.acc(), rewriter.getAffineMapArrayAttr(maps), contractOp.iterator_types()); return success(); } }; /// Merge BroadcastOp into ContractionOp user. /// Ex: /// ``` /// %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32> /// %1 = vector.contract {indexing_maps = [ /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, /// affine_map<(d0, d1, d2) -> (d0, d1)>], /// iterator_types = ["parallel", "parallel", "reduction"], /// kind = add} %0, %arg1, %cst_f0 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> /// ``` /// Gets converted to: /// ``` /// %1 = vector.contract {indexing_maps = [ /// affine_map<(d0, d1, d2) -> (d1, d2)>, /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, /// affine_map<(d0, d1, d2) -> (d0, d1)>], /// iterator_types = ["parallel", "parallel", "reduction"], /// kind = add} %arg0, %arg1, %cst_f0 /// : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> /// ``` struct CombineContractBroadcast : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ContractionOp contractOp, PatternRewriter &rewriter) const override { SmallVector maps = llvm::to_vector<4>(contractOp.getIndexingMaps()); Value lhs = contractOp.lhs(); Value rhs = contractOp.rhs(); size_t index = 0; bool changed = false; for (Value *operand : {&lhs, &rhs}) { AffineMap &map = maps[index++]; auto broadcast = operand->getDefiningOp(); if (!broadcast) continue; // contractionOp can only take vector as operands. auto srcType = broadcast.getSourceType().dyn_cast(); if (!srcType || srcType.getRank() == broadcast.getVectorType().getRank()) continue; int64_t rankDiff = broadcast.getVectorType().getRank() - srcType.getRank(); bool innerDimBroadcast = false; SmallVector originalDims; for (const auto &dim : llvm::enumerate(srcType.getShape())) { if (dim.value() != broadcast.getVectorType().getDimSize(rankDiff + dim.index())) { innerDimBroadcast = true; break; } originalDims.push_back( rewriter.getAffineDimExpr(dim.index() + rankDiff)); } // Contract doesn't support inner dimension broadcast. Once this is // relaxed we can remove this case. if (innerDimBroadcast) continue; AffineMap broadcastMap = AffineMap::get(broadcast.getVectorType().getRank(), 0, originalDims, contractOp.getContext()); map = broadcastMap.compose(map); *operand = broadcast.source(); changed = true; } if (!changed) return failure(); rewriter.replaceOpWithNewOp( contractOp, lhs, rhs, contractOp.acc(), rewriter.getAffineMapArrayAttr(maps), contractOp.iterator_types()); return success(); } }; } // namespace /// Creates an AddIOp if `isInt` is true otherwise create an arith::AddFOp using /// operands `x` and `y`. static Value createAdd(Location loc, Value x, Value y, bool isInt, PatternRewriter &rewriter) { if (isInt) return rewriter.create(loc, x, y); return rewriter.create(loc, x, y); } /// Creates a MulIOp if `isInt` is true otherwise create an MulFOp using /// operands `x and `y`. static Value createMul(Location loc, Value x, Value y, bool isInt, PatternRewriter &rewriter) { if (isInt) return rewriter.create(loc, x, y); return rewriter.create(loc, x, y); } namespace mlir { /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul /// semantics to: /// ``` /// %mta = maybe_transpose /// %mtb = maybe_transpose /// %flattened_a = vector.shape_cast %mta /// %flattened_b = vector.shape_cast %mtb /// %flattened_d = vector.matmul %flattened_a, %flattened_b /// %mtd = vector.shape_cast %flattened_d /// %d = maybe_untranspose %mtd /// %e = add %c, %d /// ``` /// `vector.matmul` later lowers to `llvm.matrix.multiply`. // /// This only kicks in when VectorTransformsOptions is set to `Matmul`. /// vector.transpose operations are inserted if the vector.contract op is not a /// row-major matrix multiply. LogicalResult ContractionOpToMatmulOpLowering::matchAndRewrite(vector::ContractionOp op, PatternRewriter &rew) const { // TODO: implement masks if (llvm::size(op.masks()) != 0) return failure(); if (vectorTransformOptions.vectorContractLowering != vector::VectorContractLowering::Matmul) return failure(); if (failed(filter(op))) return failure(); auto iteratorTypes = op.iterator_types().getValue(); if (!isParallelIterator(iteratorTypes[0]) || !isParallelIterator(iteratorTypes[1]) || !isReductionIterator(iteratorTypes[2])) return failure(); Type elementType = op.getLhsType().getElementType(); if (!elementType.isIntOrFloat()) return failure(); // Perform lhs + rhs transpositions to conform to matmul row-major semantics. // Bail out if the contraction cannot be put in this form. MLIRContext *ctx = op.getContext(); Location loc = op.getLoc(); AffineExpr m, n, k; bindDims(rew.getContext(), m, n, k); // LHS must be A(m, k) or A(k, m). Value lhs = op.lhs(); auto lhsMap = op.indexing_maps()[0].cast().getValue(); if (lhsMap == AffineMap::get(3, 0, {k, m}, ctx)) lhs = rew.create(loc, lhs, ArrayRef{1, 0}); else if (lhsMap != AffineMap::get(3, 0, {m, k}, ctx)) return failure(); // RHS must be B(k, n) or B(n, k). Value rhs = op.rhs(); auto rhsMap = op.indexing_maps()[1].cast().getValue(); if (rhsMap == AffineMap::get(3, 0, {n, k}, ctx)) rhs = rew.create(loc, rhs, ArrayRef{1, 0}); else if (rhsMap != AffineMap::get(3, 0, {k, n}, ctx)) return failure(); // At this point lhs and rhs are in row-major. VectorType lhsType = lhs.getType().cast(); VectorType rhsType = rhs.getType().cast(); int64_t lhsRows = lhsType.getDimSize(0); int64_t lhsColumns = lhsType.getDimSize(1); int64_t rhsColumns = rhsType.getDimSize(1); Type flattenedLHSType = VectorType::get(lhsType.getNumElements(), lhsType.getElementType()); lhs = rew.create(loc, flattenedLHSType, lhs); Type flattenedRHSType = VectorType::get(rhsType.getNumElements(), rhsType.getElementType()); rhs = rew.create(loc, flattenedRHSType, rhs); Value mul = rew.create(loc, lhs, rhs, lhsRows, lhsColumns, rhsColumns); mul = rew.create( loc, VectorType::get({lhsRows, rhsColumns}, getElementTypeOrSelf(op.acc().getType())), mul); // ACC must be C(m, n) or C(n, m). auto accMap = op.indexing_maps()[2].cast().getValue(); if (accMap == AffineMap::get(3, 0, {n, m}, ctx)) mul = rew.create(loc, mul, ArrayRef{1, 0}); else if (accMap != AffineMap::get(3, 0, {m, n}, ctx)) llvm_unreachable("invalid contraction semantics"); Value res = elementType.isa() ? static_cast(rew.create(loc, op.acc(), mul)) : static_cast(rew.create(loc, op.acc(), mul)); rew.replaceOp(op, res); return success(); } namespace { struct IteratorType { IteratorType(StringRef strRef) : strRef(strRef) {} bool isOfType(Attribute attr) const { auto sAttr = attr.dyn_cast(); return sAttr && sAttr.getValue() == strRef; } StringRef strRef; }; struct Par : public IteratorType { Par() : IteratorType(getParallelIteratorTypeName()) {} }; struct Red : public IteratorType { Red() : IteratorType(getReductionIteratorTypeName()) {} }; /// Generate a vector implementation for matmat, matvec and tmatvec. /// This unrolls outer-products along the reduction dimension. struct UnrolledOuterProductGenerator : public StructuredGenerator { UnrolledOuterProductGenerator(OpBuilder &builder, vector::ContractionOp op) : StructuredGenerator(builder, op), kind(op.kind()), lhs(op.lhs()), rhs(op.rhs()), res(op.acc()), lhsType(op.getLhsType()) {} Value t(Value v) { static constexpr std::array perm = {1, 0}; return builder.create(loc, v, perm); } Value outerProd(Value lhs, Value rhs, Value res, int reductionSize) { assert(reductionSize > 0); for (int64_t k = 0; k < reductionSize; ++k) { Value a = builder.create(loc, lhs, k); Value b = builder.create(loc, rhs, k); res = builder.create(loc, res.getType(), a, b, res, kind); } return res; } /// Two outer parallel, one inner reduction (matmat flavor). FailureOr matmat() { if (!iters({Par(), Par(), Red()})) return failure(); // Set up the parallel/reduction structure in the right form. AffineExpr m, n, k; bindDims(builder.getContext(), m, n, k); // Classical row-major matmul: Just permute the lhs. if (layout({{m, k}, {k, n}, {m, n}})) return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1)); // TODO: may be better to fail and use some vector -> scalar reduction. if (layout({{m, k}, {n, k}, {m, n}})) { Value tlhs = t(lhs); return outerProd(tlhs, t(rhs), res, lhsType.getDimSize(1)); } // No need to permute anything. if (layout({{k, m}, {k, n}, {m, n}})) return outerProd(lhs, rhs, res, lhsType.getDimSize(0)); // Just permute the rhs. if (layout({{k, m}, {n, k}, {m, n}})) return outerProd(lhs, t(rhs), res, lhsType.getDimSize(0)); // Transposed output: swap RHS and LHS. // Classical row-major matmul: permute the lhs. if (layout({{m, k}, {k, n}, {n, m}})) return outerProd(rhs, t(lhs), res, lhsType.getDimSize(1)); // TODO: may be better to fail and use some vector -> scalar reduction. if (layout({{m, k}, {n, k}, {n, m}})) { Value trhs = t(rhs); return outerProd(trhs, t(lhs), res, lhsType.getDimSize(1)); } if (layout({{k, m}, {k, n}, {n, m}})) return outerProd(rhs, lhs, res, lhsType.getDimSize(0)); if (layout({{k, m}, {n, k}, {n, m}})) return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0)); return failure(); } /// One outer parallel, one inner reduction (matvec flavor) FailureOr matvec() { if (!iters({Par(), Red()})) return failure(); AffineExpr m, k; bindDims(builder.getContext(), m, k); // Case mat-vec: transpose. if (layout({{m, k}, {k}, {m}})) return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1)); // Case mat-trans-vec: ready to go. if (layout({{k, m}, {k}, {m}})) return outerProd(lhs, rhs, res, lhsType.getDimSize(0)); // Case vec-mat: swap and transpose. if (layout({{k}, {m, k}, {m}})) return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0)); // Case vec-mat-trans: swap and ready to go. if (layout({{k}, {k, m}, {m}})) return outerProd(rhs, lhs, res, lhsType.getDimSize(0)); return failure(); } // // One outer reduction, one inner parallel (tmatvec flavor) // FailureOr tmatvec() { if (!iters({Red(), Par()})) return failure(); AffineExpr k, m; bindDims(builder.getContext(), k, m); // Case mat-vec: transpose. if (layout({{m, k}, {k}, {m}})) return outerProd(t(lhs), rhs, res, lhsType.getDimSize(1)); // Case mat-trans-vec: ready to go. if (layout({{k, m}, {k}, {m}})) return outerProd(lhs, rhs, res, lhsType.getDimSize(0)); // Case vec-mat: swap and transpose. if (layout({{k}, {m, k}, {m}})) return outerProd(t(rhs), lhs, res, lhsType.getDimSize(0)); // Case vec-mat-trans: swap and ready to go. if (layout({{k}, {k, m}, {m}})) return outerProd(rhs, lhs, res, lhsType.getDimSize(0)); return failure(); } private: vector::CombiningKind kind; Value lhs, rhs, res; VectorType lhsType; }; } // namespace /// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul /// semantics to a reduction_size-unrolled sequence: /// ``` /// %at = vector.transpose %a, [1, 0] /// %bRow0 = vector.extract %b[0] /// %atRow0 = vector.extract %at[0] /// %c0 = vector.outerproduct %atRow0, %bRow0, %c /// ... /// %bRowK = vector.extract %b[K] /// %atRowK = vector.extract %at[K] /// %cK = vector.outerproduct %atRowK, %bRowK, %cK-1 /// ``` /// /// This only kicks in when VectorTransformsOptions is set to OuterProduct but /// otherwise supports any layout permutation of the matrix-multiply. LogicalResult ContractionOpToOuterProductOpLowering::matchAndRewrite( vector::ContractionOp op, PatternRewriter &rewriter) const { // TODO: implement masks if (llvm::size(op.masks()) != 0) return failure(); if (vectorTransformOptions.vectorContractLowering != vector::VectorContractLowering::OuterProduct) return failure(); if (failed(filter(op))) return failure(); UnrolledOuterProductGenerator e(rewriter, op); FailureOr matmatRes = e.matmat(); if (succeeded(matmatRes)) { rewriter.replaceOp(op, *matmatRes); return success(); } FailureOr matvecRes = e.matvec(); if (succeeded(matvecRes)) { rewriter.replaceOp(op, *matvecRes); return success(); } FailureOr tmatvecRes = e.tmatvec(); if (succeeded(tmatvecRes)) { rewriter.replaceOp(op, *tmatvecRes); return success(); } return failure(); } LogicalResult ContractionOpToDotLowering::matchAndRewrite(vector::ContractionOp op, PatternRewriter &rewriter) const { // TODO: implement masks if (llvm::size(op.masks()) != 0) return failure(); if (failed(filter(op))) return failure(); if (vectorTransformOptions.vectorContractLowering != vector::VectorContractLowering::Dot) return failure(); auto iteratorTypes = op.iterator_types().getValue(); static constexpr std::array perm = {1, 0}; Location loc = op.getLoc(); Value lhs = op.lhs(), rhs = op.rhs(); using MapList = ArrayRef>; auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; AffineExpr m, n, k; bindDims(rewriter.getContext(), m, n, k); SmallVector maps = op.getIndexingMaps(); // // In the following we wish to make the reduction dimension innermost so we // can load vectors and just fmul + reduce into a scalar. // if (isParallelIterator(iteratorTypes[0]) && isParallelIterator(iteratorTypes[1]) && isReductionIterator(iteratorTypes[2])) { // // Two outer parallel, one inner reduction (matmat flavor). // if (maps == infer({{m, k}, {k, n}, {m, n}})) { rhs = rewriter.create(loc, rhs, perm); } else if (maps == infer({{m, k}, {n, k}, {m, n}})) { // No need to permute anything. } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { lhs = rewriter.create(loc, lhs, perm); rhs = rewriter.create(loc, rhs, perm); } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { lhs = rewriter.create(loc, lhs, perm); } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { // This is the classical row-major matmul. Just permute the lhs. Value tmp = lhs; lhs = rewriter.create(loc, rhs, perm); rhs = tmp; } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { std::swap(lhs, rhs); } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { Value tmp = lhs; lhs = rewriter.create(loc, rhs, perm); rhs = rewriter.create(loc, tmp, perm); } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { Value tmp = rhs; rhs = rewriter.create(loc, lhs, perm); lhs = tmp; } else { return failure(); } } else if (isParallelIterator(iteratorTypes[0]) && isReductionIterator(iteratorTypes[1])) { // // One outer parallel, one inner reduction (matvec flavor) // if (maps == infer({{m, n}, {n}, {m}})) { // No need to permute anything. } else if (maps == infer({{n, m}, {n}, {m}})) { lhs = rewriter.create(loc, lhs, perm); } else if (maps == infer({{n}, {m, n}, {m}})) { std::swap(lhs, rhs); } else if (maps == infer({{n}, {n, m}, {m}})) { std::swap(lhs, rhs); lhs = rewriter.create(loc, lhs, perm); } else { return failure(); } } else { return failure(); } VectorType dstType = op.getResultType().cast(); assert(dstType.getRank() >= 1 && dstType.getRank() <= 2 && "Expected dst type of rank 1 or 2"); unsigned rank = dstType.getRank(); unsigned dstRows = dstType.getShape()[0]; unsigned dstColumns = rank == 1 ? 1 : dstType.getShape()[1]; // ExtractOp does not allow dynamic indexing, we must unroll explicitly. Value res = rewriter.create(loc, dstType, rewriter.getZeroAttr(dstType)); bool isInt = dstType.getElementType().isa(); for (unsigned r = 0; r < dstRows; ++r) { Value a = rewriter.create(op.getLoc(), lhs, r); for (unsigned c = 0; c < dstColumns; ++c) { Value b = rank == 1 ? rhs : rewriter.create(op.getLoc(), rhs, c); Value m = createMul(op.getLoc(), a, b, isInt, rewriter); Value reduced = rewriter.create( op.getLoc(), vector::CombiningKind::ADD, m); SmallVector pos = rank == 1 ? SmallVector{r} : SmallVector{r, c}; res = rewriter.create(op.getLoc(), reduced, res, pos); } } if (auto acc = op.acc()) res = createAdd(op.getLoc(), res, acc, isInt, rewriter); rewriter.replaceOp(op, res); return success(); } /// Progressive lowering of ContractionOp. /// One: /// %x = vector.contract with at least one free/batch dimension /// is replaced by: /// %a = vector.contract with one less free/batch dimension /// %b = vector.contract with one less free/batch dimension /// .. /// %x = combine %a %b .. /// until a pure contraction is reached (no free/batch dimensions), /// which is replaced by a dot-product. /// /// This only kicks in when either VectorTransformsOptions is set /// to DOT or when other contraction patterns fail. // // TODO: break down into transpose/reshape/cast ops // when they become available to avoid code dup // TODO: investigate lowering order impact on performance LogicalResult ContractionOpLowering::matchAndRewrite(vector::ContractionOp op, PatternRewriter &rewriter) const { // TODO: implement masks. if (llvm::size(op.masks()) != 0) return failure(); if (failed(filter(op))) return failure(); // TODO: support mixed mode contract lowering. if (op.getLhsType().getElementType() != getElementTypeOrSelf(op.getAccType()) || op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType())) return failure(); // TODO: implement benefits, cost models. MLIRContext *ctx = op.getContext(); ContractionOpToMatmulOpLowering pat1(vectorTransformOptions, ctx); if (succeeded(pat1.matchAndRewrite(op, rewriter))) return success(); ContractionOpToOuterProductOpLowering pat2(vectorTransformOptions, ctx); if (succeeded(pat2.matchAndRewrite(op, rewriter))) return success(); ContractionOpToDotLowering pat3(vectorTransformOptions, ctx); if (succeeded(pat3.matchAndRewrite(op, rewriter))) return success(); // Find first batch dimension in LHS/RHS, and lower when found. std::vector> batchDimMap = op.getBatchDimMap(); if (!batchDimMap.empty()) { int64_t lhsIndex = batchDimMap[0].first; int64_t rhsIndex = batchDimMap[0].second; rewriter.replaceOp(op, lowerParallel(op, lhsIndex, rhsIndex, rewriter)); return success(); } // Collect contracting dimensions. std::vector> contractingDimMap = op.getContractingDimMap(); DenseSet lhsContractingDimSet; DenseSet rhsContractingDimSet; for (auto &dimPair : contractingDimMap) { lhsContractingDimSet.insert(dimPair.first); rhsContractingDimSet.insert(dimPair.second); } // Find first free dimension in LHS, and lower when found. VectorType lhsType = op.getLhsType(); for (int64_t lhsIndex = 0, e = lhsType.getRank(); lhsIndex < e; ++lhsIndex) { if (lhsContractingDimSet.count(lhsIndex) == 0) { rewriter.replaceOp( op, lowerParallel(op, lhsIndex, /*rhsIndex=*/-1, rewriter)); return success(); } } // Find first free dimension in RHS, and lower when found. VectorType rhsType = op.getRhsType(); for (int64_t rhsIndex = 0, e = rhsType.getRank(); rhsIndex < e; ++rhsIndex) { if (rhsContractingDimSet.count(rhsIndex) == 0) { rewriter.replaceOp( op, lowerParallel(op, /*lhsIndex=*/-1, rhsIndex, rewriter)); return success(); } } // Lower the first remaining reduction dimension. if (!contractingDimMap.empty()) { rewriter.replaceOp(op, lowerReduction(op, rewriter)); return success(); } return failure(); } // Lower one parallel dimension. // TODO: consider reusing existing contract unrolling Value ContractionOpLowering::lowerParallel(vector::ContractionOp op, int64_t lhsIndex, int64_t rhsIndex, PatternRewriter &rewriter) const { VectorType lhsType = op.getLhsType(); VectorType rhsType = op.getRhsType(); VectorType resType = op.getResultType().cast(); // Find the iterator type index and result index. SmallVector iMap = op.getIndexingMaps(); int64_t iterIndex = -1; int64_t dimSize = -1; if (lhsIndex >= 0) { iterIndex = iMap[0].getDimPosition(lhsIndex); assert((rhsIndex < 0 || iterIndex == iMap[1].getDimPosition(rhsIndex)) && "parallel index should be free in LHS or batch in LHS/RHS"); dimSize = lhsType.getDimSize(lhsIndex); } else { assert(rhsIndex >= 0 && "missing parallel index"); iterIndex = iMap[1].getDimPosition(rhsIndex); dimSize = rhsType.getDimSize(rhsIndex); } assert(iterIndex >= 0 && "parallel index not listed in operand mapping"); Optional lookup = getResultIndex(iMap[2], iterIndex); assert(lookup.hasValue() && "parallel index not listed in reduction"); int64_t resIndex = lookup.getValue(); // Construct new iterator types and affine map array attribute. std::array lowIndexingMaps = { adjustMap(iMap[0], iterIndex, rewriter), adjustMap(iMap[1], iterIndex, rewriter), adjustMap(iMap[2], iterIndex, rewriter)}; auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps); auto lowIter = rewriter.getArrayAttr(adjustIter(op.iterator_types(), iterIndex)); // Unroll into a series of lower dimensional vector.contract ops. Location loc = op.getLoc(); Value result = rewriter.create( loc, resType, rewriter.getZeroAttr(resType)); for (int64_t d = 0; d < dimSize; ++d) { auto lhs = reshapeLoad(loc, op.lhs(), lhsType, lhsIndex, d, rewriter); auto rhs = reshapeLoad(loc, op.rhs(), rhsType, rhsIndex, d, rewriter); auto acc = reshapeLoad(loc, op.acc(), resType, resIndex, d, rewriter); Value lowContract = rewriter.create( loc, lhs, rhs, acc, lowAffine, lowIter); result = reshapeStore(loc, lowContract, result, resType, resIndex, d, rewriter); } return result; } // Lower one reduction dimension. Value ContractionOpLowering::lowerReduction(vector::ContractionOp op, PatternRewriter &rewriter) const { auto loc = op.getLoc(); VectorType lhsType = op.getLhsType(); VectorType rhsType = op.getRhsType(); Type resType = op.getResultType(); assert(!resType.isa()); bool isInt = resType.isa(); // Use iterator index 0. int64_t iterIndex = 0; SmallVector iMap = op.getIndexingMaps(); Optional lookupLhs = getResultIndex(iMap[0], iterIndex); Optional lookupRhs = getResultIndex(iMap[1], iterIndex); assert(lookupLhs.hasValue() && "missing LHS parallel index"); assert(lookupRhs.hasValue() && "missing RHS parallel index"); int64_t lhsIndex = lookupLhs.getValue(); int64_t rhsIndex = lookupRhs.getValue(); int64_t dimSize = lhsType.getDimSize(lhsIndex); assert(dimSize == rhsType.getDimSize(rhsIndex) && "corrupt shape"); // Base case. if (lhsType.getRank() == 1) { assert(rhsType.getRank() == 1 && "corrupt contraction"); Value m = createMul(loc, op.lhs(), op.rhs(), isInt, rewriter); auto kind = vector::CombiningKind::ADD; Value res = rewriter.create(loc, kind, m); if (auto acc = op.acc()) res = createAdd(op.getLoc(), res, acc, isInt, rewriter); return res; } // Construct new iterator types and affine map array attribute. std::array lowIndexingMaps = { adjustMap(iMap[0], iterIndex, rewriter), adjustMap(iMap[1], iterIndex, rewriter), adjustMap(iMap[2], iterIndex, rewriter)}; auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps); auto lowIter = rewriter.getArrayAttr(adjustIter(op.iterator_types(), iterIndex)); // Unroll into a series of lower dimensional vector.contract ops. // By feeding the initial accumulator into the first contraction, // and the result of each contraction into the next, eventually // the sum of all reductions is computed. Value result = op.acc(); for (int64_t d = 0; d < dimSize; ++d) { auto lhs = reshapeLoad(loc, op.lhs(), lhsType, lhsIndex, d, rewriter); auto rhs = reshapeLoad(loc, op.rhs(), rhsType, rhsIndex, d, rewriter); result = rewriter.create(loc, lhs, rhs, result, lowAffine, lowIter); } return result; } } // namespace mlir Optional mlir::vector::distributPointwiseVectorOp( OpBuilder &builder, Operation *op, ArrayRef ids, ArrayRef multiplicity, const AffineMap &map) { OpBuilder::InsertionGuard guard(builder); builder.setInsertionPointAfter(op); Location loc = op->getLoc(); if (op->getNumResults() != 1) return {}; Value result = op->getResult(0); VectorType type = op->getResult(0).getType().dyn_cast(); if (!type || map.getNumResults() != multiplicity.size()) return {}; // For each dimension being distributed check that the size is a multiple of // the multiplicity. To handle more sizes we would need to support masking. unsigned multiplictyCount = 0; for (auto exp : map.getResults()) { auto affinExp = exp.dyn_cast(); if (!affinExp || affinExp.getPosition() >= type.getRank() || type.getDimSize(affinExp.getPosition()) % multiplicity[multiplictyCount++] != 0) return {}; } DistributeOps ops; ops.extract = builder.create(loc, result, ids, multiplicity, map); ops.insert = builder.create(loc, ops.extract, result, ids); return ops; } /// Progressive lowering of transfer_read. This pattern supports lowering of /// `vector.transfer_read` to a combination of `vector.load` and /// `vector.broadcast` if all of the following hold: /// - Stride of most minor memref dimension must be 1. /// - Out-of-bounds masking is not required. /// - If the memref's element type is a vector type then it coincides with the /// result type. /// - The permutation map doesn't perform permutation (broadcasting is allowed). struct TransferReadToVectorLoadLowering : public OpRewritePattern { TransferReadToVectorLoadLowering(MLIRContext *context, llvm::Optional maxRank) : OpRewritePattern(context), maxTransferRank(maxRank) {} LogicalResult matchAndRewrite(vector::TransferReadOp read, PatternRewriter &rewriter) const override { if (maxTransferRank && read.getVectorType().getRank() > *maxTransferRank) return failure(); SmallVector broadcastedDims; // Permutations are handled by VectorToSCF or // populateVectorTransferPermutationMapLoweringPatterns. // We let the 0-d corner case pass-through as it is supported. if (!read.permutation_map().isMinorIdentityWithBroadcasting( &broadcastedDims)) return failure(); auto memRefType = read.getShapedType().dyn_cast(); if (!memRefType) return failure(); // Non-unit strides are handled by VectorToSCF. if (!vector::isLastMemrefDimUnitStride(memRefType)) return failure(); // If there is broadcasting involved then we first load the unbroadcasted // vector, and then broadcast it with `vector.broadcast`. ArrayRef vectorShape = read.getVectorType().getShape(); SmallVector unbroadcastedVectorShape(vectorShape.begin(), vectorShape.end()); for (unsigned i : broadcastedDims) unbroadcastedVectorShape[i] = 1; VectorType unbroadcastedVectorType = VectorType::get( unbroadcastedVectorShape, read.getVectorType().getElementType()); // `vector.load` supports vector types as memref's elements only when the // resulting vector type is the same as the element type. auto memrefElTy = memRefType.getElementType(); if (memrefElTy.isa() && memrefElTy != unbroadcastedVectorType) return failure(); // Otherwise, element types of the memref and the vector must match. if (!memrefElTy.isa() && memrefElTy != read.getVectorType().getElementType()) return failure(); // Out-of-bounds dims are handled by MaterializeTransferMask. if (read.hasOutOfBoundsDim()) return failure(); // Create vector load op. Operation *loadOp; if (read.mask()) { Value fill = rewriter.create( read.getLoc(), unbroadcastedVectorType, read.padding()); loadOp = rewriter.create( read.getLoc(), unbroadcastedVectorType, read.source(), read.indices(), read.mask(), fill); } else { loadOp = rewriter.create(read.getLoc(), unbroadcastedVectorType, read.source(), read.indices()); } // Insert a broadcasting op if required. if (!broadcastedDims.empty()) { rewriter.replaceOpWithNewOp( read, read.getVectorType(), loadOp->getResult(0)); } else { rewriter.replaceOp(read, loadOp->getResult(0)); } return success(); } llvm::Optional maxTransferRank; }; /// Replace a 0-d vector.load with a memref.load + vector.broadcast. // TODO: we shouldn't cross the vector/scalar domains just for this // but atm we lack the infra to avoid it. Possible solutions include: // - go directly to LLVM + bitcast // - introduce a bitcast op and likely a new pointer dialect // - let memref.load/store additionally support the 0-d vector case // There are still deeper data layout issues lingering even in this // trivial case (for architectures for which this matters). struct VectorLoadToMemrefLoadLowering : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::LoadOp loadOp, PatternRewriter &rewriter) const override { auto vecType = loadOp.getVectorType(); if (vecType.getNumElements() != 1) return failure(); auto memrefLoad = rewriter.create( loadOp.getLoc(), loadOp.base(), loadOp.indices()); rewriter.replaceOpWithNewOp(loadOp, vecType, memrefLoad); return success(); } }; /// Replace a 0-d vector.store with a vector.extractelement + memref.store. struct VectorStoreToMemrefStoreLowering : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::StoreOp storeOp, PatternRewriter &rewriter) const override { auto vecType = storeOp.getVectorType(); if (vecType.getNumElements() != 1) return failure(); Value extracted; if (vecType.getRank() == 0) { // TODO: Unifiy once ExtractOp supports 0-d vectors. extracted = rewriter.create( storeOp.getLoc(), storeOp.valueToStore()); } else { SmallVector indices(vecType.getRank(), 0); extracted = rewriter.create( storeOp.getLoc(), storeOp.valueToStore(), indices); } rewriter.replaceOpWithNewOp( storeOp, extracted, storeOp.base(), storeOp.indices()); return success(); } }; /// Progressive lowering of transfer_write. This pattern supports lowering of /// `vector.transfer_write` to `vector.store` if all of the following hold: /// - Stride of most minor memref dimension must be 1. /// - Out-of-bounds masking is not required. /// - If the memref's element type is a vector type then it coincides with the /// type of the written value. /// - The permutation map is the minor identity map (neither permutation nor /// broadcasting is allowed). struct TransferWriteToVectorStoreLowering : public OpRewritePattern { TransferWriteToVectorStoreLowering(MLIRContext *context, llvm::Optional maxRank) : OpRewritePattern(context), maxTransferRank(maxRank) {} LogicalResult matchAndRewrite(vector::TransferWriteOp write, PatternRewriter &rewriter) const override { if (maxTransferRank && write.getVectorType().getRank() > *maxTransferRank) return failure(); // Permutations are handled by VectorToSCF or // populateVectorTransferPermutationMapLoweringPatterns. if ( // pass-through for the 0-d corner case. !write.permutation_map().isMinorIdentity()) return failure(); auto memRefType = write.getShapedType().dyn_cast(); if (!memRefType) return failure(); // Non-unit strides are handled by VectorToSCF. if (!vector::isLastMemrefDimUnitStride(memRefType)) return failure(); // `vector.store` supports vector types as memref's elements only when the // type of the vector value being written is the same as the element type. auto memrefElTy = memRefType.getElementType(); if (memrefElTy.isa() && memrefElTy != write.getVectorType()) return failure(); // Otherwise, element types of the memref and the vector must match. if (!memrefElTy.isa() && memrefElTy != write.getVectorType().getElementType()) return failure(); // Out-of-bounds dims are handled by MaterializeTransferMask. if (write.hasOutOfBoundsDim()) return failure(); if (write.mask()) { rewriter.replaceOpWithNewOp( write, write.source(), write.indices(), write.mask(), write.vector()); } else { rewriter.replaceOpWithNewOp( write, write.vector(), write.source(), write.indices()); } return success(); } llvm::Optional maxTransferRank; }; // Returns the values in `arrayAttr` as an integer vector. static SmallVector getIntValueVector(ArrayAttr arrayAttr) { return llvm::to_vector<4>( llvm::map_range(arrayAttr.getAsRange(), [](IntegerAttr attr) { return attr.getInt(); })); } // Shuffles vector.bitcast op after vector.extract op. // // This transforms IR like: // %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16> // %1 = vector.extract %0[3] : vector<8xf16> // Into: // %0 = vector.extract %src[1] : vector<4xf32> // %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16> // %2 = vector.extract %1[1] : vector<2xf16> struct BubbleDownVectorBitCastForExtract : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ExtractOp extractOp, PatternRewriter &rewriter) const override { // Only support extracting scalars for now. if (extractOp.getVectorType().getRank() != 1) return failure(); auto castOp = extractOp.vector().getDefiningOp(); if (!castOp) return failure(); VectorType castSrcType = castOp.getSourceVectorType(); VectorType castDstType = castOp.getResultVectorType(); assert(castSrcType.getRank() == castDstType.getRank()); // Fail to match if we only have one element in the cast op source. // This is to avoid infinite loop given that this pattern can generate // such cases. if (castSrcType.getNumElements() == 1) return failure(); // Only support casting to a larger number of elements or now. // E.g., vector<4xf32> -> vector<8xf16>. if (castSrcType.getNumElements() > castDstType.getNumElements()) return failure(); unsigned expandRatio = castDstType.getNumElements() / castSrcType.getNumElements(); auto getFirstIntValue = [](ArrayAttr attr) -> uint64_t { return (*attr.getAsValueRange().begin()).getZExtValue(); }; uint64_t index = getFirstIntValue(extractOp.position()); // Get the single scalar (as a vector) in the source value that packs the // desired scalar. E.g. extract vector<1xf32> from vector<4xf32> VectorType oneScalarType = VectorType::get({1}, castSrcType.getElementType()); Value packedValue = rewriter.create( extractOp.getLoc(), oneScalarType, castOp.source(), rewriter.getI64ArrayAttr(index / expandRatio)); // Cast it to a vector with the desired scalar's type. // E.g. f32 -> vector<2xf16> VectorType packedType = VectorType::get({expandRatio}, castDstType.getElementType()); Value castedValue = rewriter.create( extractOp.getLoc(), packedType, packedValue); // Finally extract the desired scalar. rewriter.replaceOpWithNewOp( extractOp, extractOp.getType(), castedValue, rewriter.getI64ArrayAttr(index % expandRatio)); return success(); } }; // Shuffles vector.bitcast op after vector.extract_strided_slice op. // // This transforms IR like: // %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16> // %0 = vector.extract_strided_slice %cast { // offsets = [4], sizes = [4], strides = [1] // } : vector<8xf16> to vector<4xf16> // Into: // %0 = vector.extract_strided_slice %src { // offsets = [2], sizes = [2], strides = [1] // } : vector<4xf32> to vector<2xf32> // %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16> struct BubbleDownBitCastForStridedSliceExtract : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp, PatternRewriter &rewriter) const override { auto castOp = extractOp.vector().getDefiningOp(); if (!castOp) return failure(); VectorType castSrcType = castOp.getSourceVectorType(); VectorType castDstType = castOp.getResultVectorType(); assert(castSrcType.getRank() == castDstType.getRank()); int64_t castSrcLastDim = castSrcType.getShape().back(); int64_t castDstLastDim = castDstType.getShape().back(); // Require casting to more elements for now; other cases to be implemented. if (castSrcLastDim > castDstLastDim) return failure(); // Only accept all one strides for now. if (llvm::any_of(extractOp.strides().getAsValueRange(), [](const APInt &val) { return !val.isOneValue(); })) return failure(); unsigned rank = extractOp.getVectorType().getRank(); assert(castDstLastDim % castSrcLastDim == 0); int64_t expandRatio = castDstLastDim / castSrcLastDim; // If we have a less number of offsets than the rank, then implicitly we // are selecting the full range for the last bitcasted dimension; other // dimensions aren't affected. Otherwise, we need to scale down the last // dimension's offset given we are extracting from less elements now. ArrayAttr newOffsets = extractOp.offsets(); if (newOffsets.size() == rank) { SmallVector offsets = getIntValueVector(newOffsets); if (offsets.back() % expandRatio != 0) return failure(); offsets.back() = offsets.back() / expandRatio; newOffsets = rewriter.getI64ArrayAttr(offsets); } // Similarly for sizes. ArrayAttr newSizes = extractOp.sizes(); if (newSizes.size() == rank) { SmallVector sizes = getIntValueVector(newSizes); if (sizes.back() % expandRatio != 0) return failure(); sizes.back() = sizes.back() / expandRatio; newSizes = rewriter.getI64ArrayAttr(sizes); } SmallVector dims = llvm::to_vector<4>(extractOp.getType().cast().getShape()); dims.back() = dims.back() / expandRatio; VectorType newExtractType = VectorType::get(dims, castSrcType.getElementType()); auto newExtractOp = rewriter.create( extractOp.getLoc(), newExtractType, castOp.source(), newOffsets, newSizes, extractOp.strides()); rewriter.replaceOpWithNewOp( extractOp, extractOp.getType(), newExtractOp); return success(); } }; // Shuffles vector.bitcast op before vector.insert_strided_slice op. // // This transforms IR like: // %0 = vector.insert_strided_slice %src, %dst { // offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16> // %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32> // Into: // %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32> // %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32> // %2 = vector.insert_strided_slice %src, %dst { // offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32> struct BubbleUpBitCastForStridedSliceInsert : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, PatternRewriter &rewriter) const override { VectorType castSrcType = bitcastOp.getSourceVectorType(); VectorType castDstType = bitcastOp.getResultVectorType(); assert(castSrcType.getRank() == castDstType.getRank()); int64_t castSrcLastDim = castSrcType.getShape().back(); int64_t castDstLastDim = castDstType.getShape().back(); // Require casting to less elements for now; other cases to be implemented. if (castSrcLastDim < castDstLastDim) return failure(); assert(castSrcLastDim % castDstLastDim == 0); int64_t shrinkRatio = castSrcLastDim / castDstLastDim; auto insertOp = bitcastOp.source().getDefiningOp(); if (!insertOp) return failure(); // Only accept all one strides for now. if (llvm::any_of(insertOp.strides().getAsValueRange(), [](const APInt &val) { return !val.isOneValue(); })) return failure(); unsigned rank = insertOp.getSourceVectorType().getRank(); // Require insert op to have the same rank for the source and destination // vector; other cases to be implemented. if (rank != insertOp.getDestVectorType().getRank()) return failure(); ArrayAttr newOffsets = insertOp.offsets(); assert(newOffsets.size() == rank); SmallVector offsets = getIntValueVector(newOffsets); if (offsets.back() % shrinkRatio != 0) return failure(); offsets.back() = offsets.back() / shrinkRatio; newOffsets = rewriter.getI64ArrayAttr(offsets); SmallVector srcDims = llvm::to_vector<4>(insertOp.getSourceVectorType().getShape()); srcDims.back() = srcDims.back() / shrinkRatio; VectorType newCastSrcType = VectorType::get(srcDims, castDstType.getElementType()); auto newCastSrcOp = rewriter.create( bitcastOp.getLoc(), newCastSrcType, insertOp.source()); SmallVector dstDims = llvm::to_vector<4>(insertOp.getDestVectorType().getShape()); dstDims.back() = dstDims.back() / shrinkRatio; VectorType newCastDstType = VectorType::get(dstDims, castDstType.getElementType()); auto newCastDstOp = rewriter.create( bitcastOp.getLoc(), newCastDstType, insertOp.dest()); rewriter.replaceOpWithNewOp( bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets, insertOp.strides()); return success(); } }; static Value createCastToIndexLike(PatternRewriter &rewriter, Location loc, Type targetType, Value value) { if (targetType == value.getType()) return value; bool targetIsIndex = targetType.isIndex(); bool valueIsIndex = value.getType().isIndex(); if (targetIsIndex ^ valueIsIndex) return rewriter.create(loc, targetType, value); auto targetIntegerType = targetType.dyn_cast(); auto valueIntegerType = value.getType().dyn_cast(); assert(targetIntegerType && valueIntegerType && "unexpected cast between types other than integers and index"); assert(targetIntegerType.getSignedness() == valueIntegerType.getSignedness()); if (targetIntegerType.getWidth() > valueIntegerType.getWidth()) return rewriter.create(loc, targetIntegerType, value); return rewriter.create(loc, targetIntegerType, value); } // Helper that returns a vector comparison that constructs a mask: // mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b] // // If `dim == 0` then the result will be a 0-D vector. // // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative, // much more compact, IR for this operation, but LLVM eventually // generates more elaborate instructions for this intrinsic since it // is very conservative on the boundary conditions. static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op, bool indexOptimizations, int64_t dim, Value b, Value *off = nullptr) { auto loc = op->getLoc(); // If we can assume all indices fit in 32-bit, we perform the vector // comparison in 32-bit to get a higher degree of SIMD parallelism. // Otherwise we perform the vector comparison using 64-bit indices. Type idxType = indexOptimizations ? rewriter.getI32Type() : rewriter.getI64Type(); DenseIntElementsAttr indicesAttr; if (dim == 0 && indexOptimizations) { indicesAttr = DenseIntElementsAttr::get( VectorType::get(ArrayRef{}, idxType), ArrayRef{0}); } else if (dim == 0) { indicesAttr = DenseIntElementsAttr::get( VectorType::get(ArrayRef{}, idxType), ArrayRef{0}); } else if (indexOptimizations) { indicesAttr = rewriter.getI32VectorAttr( llvm::to_vector<4>(llvm::seq(0, dim))); } else { indicesAttr = rewriter.getI64VectorAttr( llvm::to_vector<4>(llvm::seq(0, dim))); } Value indices = rewriter.create(loc, indicesAttr); // Add in an offset if requested. if (off) { Value o = createCastToIndexLike(rewriter, loc, idxType, *off); Value ov = rewriter.create(loc, indices.getType(), o); indices = rewriter.create(loc, ov, indices); } // Construct the vector comparison. Value bound = createCastToIndexLike(rewriter, loc, idxType, b); Value bounds = rewriter.create(loc, indices.getType(), bound); return rewriter.create(loc, arith::CmpIPredicate::slt, indices, bounds); } template struct MaterializeTransferMask : public OpRewritePattern { public: explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt) : mlir::OpRewritePattern(context), indexOptimizations(enableIndexOpt) {} LogicalResult matchAndRewrite(ConcreteOp xferOp, PatternRewriter &rewriter) const override { if (!xferOp.hasOutOfBoundsDim()) return failure(); if (xferOp.getVectorType().getRank() > 1 || llvm::size(xferOp.indices()) == 0) return failure(); Location loc = xferOp->getLoc(); VectorType vtp = xferOp.getVectorType(); // * Create a vector with linear indices [ 0 .. vector_length - 1 ]. // * Create offsetVector = [ offset + 0 .. offset + vector_length - 1 ]. // * Let dim the memref dimension, compute the vector comparison mask // (in-bounds mask): // [ offset + 0 .. offset + vector_length - 1 ] < [ dim .. dim ] // // TODO: when the leaf transfer rank is k > 1, we need the last `k` // dimensions here. unsigned vecWidth = vtp.getNumElements(); unsigned lastIndex = llvm::size(xferOp.indices()) - 1; Value off = xferOp.indices()[lastIndex]; Value dim = vector::createOrFoldDimOp(rewriter, loc, xferOp.source(), lastIndex); Value mask = buildVectorComparison(rewriter, xferOp, indexOptimizations, vecWidth, dim, &off); if (xferOp.mask()) { // Intersect the in-bounds with the mask specified as an op parameter. mask = rewriter.create(loc, mask, xferOp.mask()); } rewriter.updateRootInPlace(xferOp, [&]() { xferOp.maskMutable().assign(mask); xferOp.in_boundsAttr(rewriter.getBoolArrayAttr({true})); }); return success(); } private: const bool indexOptimizations; }; /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only). class VectorCreateMaskOpConversion : public OpRewritePattern { public: explicit VectorCreateMaskOpConversion(MLIRContext *context, bool enableIndexOpt) : mlir::OpRewritePattern(context), indexOptimizations(enableIndexOpt) {} LogicalResult matchAndRewrite(vector::CreateMaskOp op, PatternRewriter &rewriter) const override { auto dstType = op.getType(); int64_t rank = dstType.getRank(); if (rank > 1) return failure(); rewriter.replaceOp( op, buildVectorComparison(rewriter, op, indexOptimizations, rank == 0 ? 0 : dstType.getDimSize(0), op.getOperand(0))); return success(); } private: const bool indexOptimizations; }; // Drop inner most contiguous unit dimensions from transfer_read operand. class DropInnerMostUnitDims : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::TransferReadOp readOp, PatternRewriter &rewriter) const override { // TODO: support 0-d corner case. if (readOp.getTransferRank() == 0) return failure(); // TODO: support mask. if (readOp.mask()) return failure(); auto srcType = readOp.source().getType().dyn_cast(); if (!srcType || !srcType.hasStaticShape()) return failure(); if (!readOp.permutation_map().isMinorIdentity()) return failure(); auto targetType = readOp.getVectorType(); if (targetType.getRank() <= 1) return failure(); SmallVector srcStrides; int64_t srcOffset; if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset))) return failure(); size_t dimsToDrop = 0; for (size_t i = 1; i < srcStrides.size(); ++i) { int dim = srcType.getRank() - i - 1; if (srcStrides[dim] == 1) { dimsToDrop++; } else { break; } } if (dimsToDrop == 0) return failure(); auto resultTargetVecType = VectorType::get(targetType.getShape().drop_back(dimsToDrop), targetType.getElementType()); MemRefType resultMemrefType; if (srcType.getLayout().getAffineMap().isIdentity()) { resultMemrefType = MemRefType::get( srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(), {}, srcType.getMemorySpaceAsInt()); } else { AffineMap map = srcType.getLayout().getAffineMap(); int numResultDims = map.getNumDims() - dimsToDrop; int numSymbols = map.getNumSymbols(); for (size_t i = 0; i < dimsToDrop; ++i) { int dim = srcType.getRank() - i - 1; map = map.replace(rewriter.getAffineDimExpr(dim), rewriter.getAffineConstantExpr(0), numResultDims, numSymbols); } resultMemrefType = MemRefType::get( srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(), map, srcType.getMemorySpaceAsInt()); } auto loc = readOp.getLoc(); SmallVector offsets(srcType.getRank(), 0); SmallVector strides(srcType.getRank(), 1); ArrayAttr inBoundsAttr = readOp.in_bounds() ? rewriter.getArrayAttr( readOp.in_boundsAttr().getValue().drop_back(dimsToDrop)) : ArrayAttr(); Value rankedReducedView = rewriter.create( loc, resultMemrefType, readOp.source(), offsets, srcType.getShape(), strides); auto permMap = getTransferMinorIdentityMap( rankedReducedView.getType().cast(), resultTargetVecType); Value result = rewriter.create( loc, resultTargetVecType, rankedReducedView, readOp.indices().drop_back(dimsToDrop), AffineMapAttr::get(permMap), readOp.padding(), // TODO: support mask. /*mask=*/Value(), inBoundsAttr); rewriter.replaceOpWithNewOp(readOp, targetType, result); return success(); } }; namespace { /// This function checks to see if the vector combining kind /// is consistent with the integer or float element type. static bool isValidKind(bool isInt, vector::CombiningKind kind) { using vector::CombiningKind; enum class KindType { FLOAT, INT, INVALID }; KindType type{KindType::INVALID}; switch (kind) { case CombiningKind::MINF: case CombiningKind::MAXF: type = KindType::FLOAT; break; case CombiningKind::MINUI: case CombiningKind::MINSI: case CombiningKind::MAXUI: case CombiningKind::MAXSI: case CombiningKind::AND: case CombiningKind::OR: case CombiningKind::XOR: type = KindType::INT; break; case CombiningKind::ADD: case CombiningKind::MUL: type = isInt ? KindType::INT : KindType::FLOAT; break; } bool isValidIntKind = (type == KindType::INT) && isInt; bool isValidFloatKind = (type == KindType::FLOAT) && (!isInt); return (isValidIntKind || isValidFloatKind); } /// This function constructs the appropriate integer or float /// operation given the vector combining kind and operands. The /// supported int operations are : add, mul, min (signed/unsigned), /// max(signed/unsigned), and, or, xor. The supported float /// operations are : add, mul, min and max. static Value genOperator(Location loc, Value x, Value y, vector::CombiningKind kind, PatternRewriter &rewriter) { using vector::CombiningKind; auto elType = x.getType().cast().getElementType(); bool isInt = elType.isIntOrIndex(); Value combinedResult{nullptr}; switch (kind) { case CombiningKind::ADD: if (isInt) combinedResult = rewriter.create(loc, x, y); else combinedResult = rewriter.create(loc, x, y); break; case CombiningKind::MUL: if (isInt) combinedResult = rewriter.create(loc, x, y); else combinedResult = rewriter.create(loc, x, y); break; case CombiningKind::MINUI: combinedResult = rewriter.create(loc, x, y); break; case CombiningKind::MINSI: combinedResult = rewriter.create(loc, x, y); break; case CombiningKind::MAXUI: combinedResult = rewriter.create(loc, x, y); break; case CombiningKind::MAXSI: combinedResult = rewriter.create(loc, x, y); break; case CombiningKind::AND: combinedResult = rewriter.create(loc, x, y); break; case CombiningKind::OR: combinedResult = rewriter.create(loc, x, y); break; case CombiningKind::XOR: combinedResult = rewriter.create(loc, x, y); break; case CombiningKind::MINF: combinedResult = rewriter.create(loc, x, y); break; case CombiningKind::MAXF: combinedResult = rewriter.create(loc, x, y); break; } return combinedResult; } /// Convert vector.scan op into arith ops and /// vector.insert_strided_slice/extract_strided_slice /// /// Ex: /// ``` /// %0:2 = vector.scan , %arg0, %arg1 {inclusive = true, reduction_dim = /// 1} : /// (vector<2x3xi32>, vector<2xi32>) to (vector<2x3xi32>, vector<2xi32>) /// ``` /// Gets converted to: /// ``` /// %cst = arith.constant dense<0> : vector<2x3xi32> /// %0 = vector.extract_strided_slice %arg0 {offsets = [0, 0], sizes = [2, 1], /// strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %1 = /// vector.insert_strided_slice %0, %cst {offsets = [0, 0], strides = [1, 1]} /// : vector<2x1xi32> into vector<2x3xi32> %2 = vector.extract_strided_slice /// %arg0 {offsets = [0, 1], sizes = [2, 1], strides = [1, 1]} : /// vector<2x3xi32> to vector<2x1xi32> %3 = arith.muli %0, %2 : /// vector<2x1xi32> %4 = vector.insert_strided_slice %3, %1 {offsets = [0, 1], /// strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %5 = /// vector.extract_strided_slice %arg0 {offsets = [0, 2], sizes = [2, 1], /// strides = [1, 1]} : vector<2x3xi32> to vector<2x1xi32> %6 = arith.muli %3, /// %5 : vector<2x1xi32> %7 = vector.insert_strided_slice %6, %4 {offsets = /// [0, 2], strides = [1, 1]} : vector<2x1xi32> into vector<2x3xi32> %8 = /// vector.shape_cast %6 : vector<2x1xi32> to vector<2xi32> return %7, %8 : /// vector<2x3xi32>, vector<2xi32> /// ``` struct ScanToArithOps : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ScanOp scanOp, PatternRewriter &rewriter) const override { auto loc = scanOp.getLoc(); VectorType destType = scanOp.getDestType(); ArrayRef destShape = destType.getShape(); auto elType = destType.getElementType(); bool isInt = elType.isIntOrIndex(); if (!isValidKind(isInt, scanOp.kind())) return failure(); VectorType resType = VectorType::get(destShape, elType); Value result = rewriter.create( loc, resType, rewriter.getZeroAttr(resType)); int64_t reductionDim = scanOp.reduction_dim(); bool inclusive = scanOp.inclusive(); int64_t destRank = destType.getRank(); VectorType initialValueType = scanOp.getInitialValueType(); int64_t initialValueRank = initialValueType.getRank(); SmallVector reductionShape(destShape.begin(), destShape.end()); reductionShape[reductionDim] = 1; VectorType reductionType = VectorType::get(reductionShape, elType); SmallVector offsets(destRank, 0); SmallVector strides(destRank, 1); SmallVector sizes(destShape.begin(), destShape.end()); sizes[reductionDim] = 1; ArrayAttr scanSizes = rewriter.getI64ArrayAttr(sizes); ArrayAttr scanStrides = rewriter.getI64ArrayAttr(strides); Value lastOutput, lastInput; for (int i = 0; i < destShape[reductionDim]; i++) { offsets[reductionDim] = i; ArrayAttr scanOffsets = rewriter.getI64ArrayAttr(offsets); Value input = rewriter.create( loc, reductionType, scanOp.source(), scanOffsets, scanSizes, scanStrides); Value output; if (i == 0) { if (inclusive) { output = input; } else { if (initialValueRank == 0) { // ShapeCastOp cannot handle 0-D vectors output = rewriter.create( loc, input.getType(), scanOp.initial_value()); } else { output = rewriter.create( loc, input.getType(), scanOp.initial_value()); } } } else { Value y = inclusive ? input : lastInput; output = genOperator(loc, lastOutput, y, scanOp.kind(), rewriter); assert(output != nullptr); } result = rewriter.create( loc, output, result, offsets, strides); lastOutput = output; lastInput = input; } Value reduction; if (initialValueRank == 0) { Value v = rewriter.create(loc, lastOutput, 0); reduction = rewriter.create(loc, initialValueType, v); } else { reduction = rewriter.create(loc, initialValueType, lastOutput); } rewriter.replaceOp(scanOp, {result, reduction}); return success(); } }; } // namespace void mlir::vector::populateVectorMaskMaterializationPatterns( RewritePatternSet &patterns, bool indexOptimizations) { patterns.add, MaterializeTransferMask>( patterns.getContext(), indexOptimizations); } void mlir::vector::populateShapeCastFoldingPatterns( RewritePatternSet &patterns) { patterns.add(patterns.getContext()); } void mlir::vector::populateBubbleVectorBitCastOpPatterns( RewritePatternSet &patterns) { patterns.add(patterns.getContext()); } void mlir::vector::populateVectorBroadcastLoweringPatterns( RewritePatternSet &patterns) { patterns.add(patterns.getContext()); } void mlir::vector::populateVectorMaskOpLoweringPatterns( RewritePatternSet &patterns) { patterns.add( patterns.getContext()); } void mlir::vector::populateVectorShapeCastLoweringPatterns( RewritePatternSet &patterns) { patterns.add( patterns.getContext()); } void mlir::vector::populateVectorContractLoweringPatterns( RewritePatternSet &patterns, VectorTransformsOptions options) { patterns.add(patterns.getContext()); patterns.add(options, patterns.getContext()); } void mlir::vector::populateVectorTransposeLoweringPatterns( RewritePatternSet &patterns, VectorTransformsOptions options) { patterns.add( options, patterns.getContext()); } void mlir::vector::populateVectorReductionToContractPatterns( RewritePatternSet &patterns) { patterns.add(patterns.getContext()); } void mlir::vector:: populateVectorTransferCollapseInnerMostContiguousDimsPatterns( RewritePatternSet &patterns) { patterns.add(patterns.getContext()); } void mlir::vector::populateVectorTransferLoweringPatterns( RewritePatternSet &patterns, llvm::Optional maxTransferRank) { patterns.add(patterns.getContext(), maxTransferRank); patterns .add( patterns.getContext()); } void mlir::vector::populateVectorScanLoweringPatterns( RewritePatternSet &patterns) { patterns.add(patterns.getContext()); }