//===- ParallelLoopTiling.cpp - Tiles scf.parallel ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements loop tiling on parallel loops. // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/SCF/Passes.h" #include "mlir/Dialect/SCF/SCF.h" #include "mlir/Dialect/SCF/Transforms.h" #include "mlir/Dialect/SCF/Utils.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" using namespace mlir; using namespace mlir::scf; /// Tile a parallel loop of the form /// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3) /// step (%arg4, %arg5) /// /// into /// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3) /// step (%arg4*tileSize[0], /// %arg5*tileSize[1]) /// scf.parallel (%j0, %j1) = (0, 0) to (min(%arg4*tileSize[0], %arg2-%i0) /// min(%arg5*tileSize[1], %arg3-%i1)) /// step (%arg4, %arg5) /// /// where the uses of %i0 and %i1 in the loop body are replaced by /// %i0 + j0 and %i1 + %j1. // /// The old loop is replaced with the new one. std::pair mlir::scf::tileParallelLoop(ParallelOp op, ArrayRef tileSizes) { OpBuilder b(op); auto zero = b.create(op.getLoc(), 0); SmallVector tileSizeConstants; tileSizeConstants.reserve(op.upperBound().size()); for (size_t i = 0, end = op.upperBound().size(); i != end; ++i) { if (i < tileSizes.size()) tileSizeConstants.push_back( b.create(op.getLoc(), tileSizes[i])); else // Just pick 1 for the remaining dimensions. tileSizeConstants.push_back(b.create(op.getLoc(), 1)); } // Create the outer loop with adjusted steps. SmallVector newSteps; newSteps.reserve(op.step().size()); for (auto step : llvm::zip(op.step(), tileSizeConstants)) { newSteps.push_back( b.create(op.getLoc(), std::get<0>(step), std::get<1>(step))); } auto outerLoop = b.create(op.getLoc(), op.lowerBound(), op.upperBound(), newSteps); b.setInsertionPointToStart(outerLoop.getBody()); // Compute min(size, dim - offset) to avoid out-of-bounds accesses. // FIXME: Instead of using min, we want to replicate the tail. This would give // the inner loop constant bounds for easy vectorization. auto minMap = AffineMap::get( /*dimCount=*/3, /*symbolCount=*/0, {getAffineDimExpr(/*position=*/0, b.getContext()), getAffineDimExpr(/*position=*/1, b.getContext()) - getAffineDimExpr(/*position=*/2, b.getContext())}, b.getContext()); // Create the inner loop with adjusted bounds. SmallVector newBounds; newBounds.reserve(op.upperBound().size()); for (auto dim : llvm::zip(outerLoop.lowerBound(), outerLoop.upperBound(), outerLoop.step(), outerLoop.getInductionVars(), op.step(), tileSizeConstants)) { Value lowerBound, upperBound, newStep, iv, step, tileSizeConstant; std::tie(lowerBound, upperBound, newStep, iv, step, tileSizeConstant) = dim; // Collect the statically known loop bounds auto lowerBoundConstant = dyn_cast_or_null(lowerBound.getDefiningOp()); auto upperBoundConstant = dyn_cast_or_null(upperBound.getDefiningOp()); auto stepConstant = dyn_cast_or_null(step.getDefiningOp()); auto tileSize = cast(tileSizeConstant.getDefiningOp()).getValue(); // If the loop bounds and the loop step are constant and if the number of // loop iterations is an integer multiple of the tile size, we use a static // bound for the inner loop. if (lowerBoundConstant && upperBoundConstant && stepConstant) { auto numIterations = llvm::divideCeil(upperBoundConstant.getValue() - lowerBoundConstant.getValue(), stepConstant.getValue()); if (numIterations % tileSize == 0) { newBounds.push_back(newStep); continue; } } // Otherwise, we dynamically compute the bound for // each iteration of the outer loop. newBounds.push_back( b.create(op.getLoc(), b.getIndexType(), minMap, ValueRange{newStep, upperBound, iv})); } auto innerLoop = b.create( op.getLoc(), SmallVector(newBounds.size(), zero), newBounds, op.step()); // Steal the body of the old parallel loop and erase it. innerLoop.region().takeBody(op.region()); // Insert computation for new index vectors and replace uses. b.setInsertionPointToStart(innerLoop.getBody()); for (auto ivs : llvm::zip(innerLoop.getInductionVars(), outerLoop.getInductionVars())) { Value inner_index = std::get<0>(ivs); AddIOp newIndex = b.create(op.getLoc(), std::get<0>(ivs), std::get<1>(ivs)); inner_index.replaceAllUsesExcept(newIndex, newIndex); } op.erase(); return std::make_pair(outerLoop, innerLoop); } namespace { struct ParallelLoopTiling : public SCFParallelLoopTilingBase { ParallelLoopTiling() = default; explicit ParallelLoopTiling(ArrayRef tileSizes) { this->tileSizes = tileSizes; } void runOnFunction() override { SmallVector innermostPloops; getInnermostParallelLoops(getFunction().getOperation(), innermostPloops); for (ParallelOp ploop : innermostPloops) { // FIXME: Add reduction support. if (ploop.getNumReductions() == 0) tileParallelLoop(ploop, tileSizes); } } }; } // namespace std::unique_ptr mlir::createParallelLoopTilingPass(ArrayRef tileSizes) { return std::make_unique(tileSizes); }