//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Vectorization transformations. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" #include "mlir/Dialect/Linalg/IR/LinalgOps.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" #include "mlir/Dialect/Utils/StructuredOpsUtils.h" #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" #include "mlir/Dialect/Vector/VectorOps.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Pass/Pass.h" #include "mlir/Support/LLVM.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace mlir; using namespace mlir::edsc; using namespace mlir::edsc::intrinsics; using namespace mlir::linalg; using llvm::dbgs; #define DEBUG_TYPE "linalg-vectorization" static bool hasMultiplyAddBody(Region &r) { if (!llvm::hasSingleElement(r)) return false; if (!llvm::hasNItems(r.front().begin(), r.front().end(), 3)) return false; using mlir::matchers::m_Val; auto a = m_Val(r.getArgument(0)); auto b = m_Val(r.getArgument(1)); auto c = m_Val(r.getArgument(2)); // TODO: Update this detection once we have matcher support for specifying // that any permutation of operands matches. auto pattern1 = m_Op(m_Op(m_Op(a, b), c)); auto pattern2 = m_Op(m_Op(c, m_Op(a, b))); auto pattern3 = m_Op(m_Op(m_Op(b, a), c)); auto pattern4 = m_Op(m_Op(c, m_Op(b, a))); auto pattern5 = m_Op(m_Op(m_Op(a, b), c)); auto pattern6 = m_Op(m_Op(c, m_Op(a, b))); auto pattern7 = m_Op(m_Op(m_Op(b, a), c)); auto pattern8 = m_Op(m_Op(c, m_Op(b, a))); return pattern1.match(&r.front().back()) || pattern2.match(&r.front().back()) || pattern3.match(&r.front().back()) || pattern4.match(&r.front().back()) || pattern5.match(&r.front().back()) || pattern6.match(&r.front().back()) || pattern7.match(&r.front().back()) || pattern8.match(&r.front().back()); } // TODO: Should be Tablegen'd from a single source that generates the op itself. static LogicalResult isContraction(Operation *op) { // TODO: interface for named ops. if (isa(op)) return success(); auto genericOp = dyn_cast(op); if (!genericOp) return failure(); auto mapRange = genericOp.indexing_maps().getAsValueRange(); return success( genericOp.getNumInputs() == 2 && genericOp.getNumOutputs() == 1 && llvm::all_of(mapRange, [](AffineMap m) { return m.isProjectedPermutation(); }) && hasMultiplyAddBody(genericOp.region())); } LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { auto linalgOp = cast(op); // All types must be static shape to go to vector. for (Value operand : linalgOp.getInputsAndOutputBuffers()) if (!operand.getType().cast().hasStaticShape()) return failure(); for (Type outputTensorType : linalgOp.getOutputTensorTypes()) if (!outputTensorType.cast().hasStaticShape()) return failure(); if (isa(op)) return success(); return isContraction(op); } void mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op) { assert(succeeded(vectorizeLinalgOpPrecondition(op))); StringRef dbgPref = "\n[" DEBUG_TYPE "]: "; (void)dbgPref; edsc::ScopedContext scope(builder, op->getLoc()); if (auto fillOp = dyn_cast(op)) { // Vectorize fill as a vector.broadcast. LLVM_DEBUG(dbgs() << dbgPref << "Rewrite linalg.fill as vector.broadcast: " << *op); Value memref = vector_type_cast(fillOp.getOutputBuffer(0)); Value dst = std_load(memref); Value res = vector_broadcast(dst.getType(), fillOp.value()); std_store(res, memref); return; } // In the case of 0-D memrefs, return null and special case to scalar load or // store later. auto extractVectorTypeFromScalarView = [](Value v) { MemRefType mt = v.getType().cast(); return mt.getShape().empty() ? VectorType() : VectorType::get(mt.getShape(), mt.getElementType()); }; if (auto copyOp = dyn_cast(op)) { // Vectorize copy as a vector.transfer_read+vector.transfer_write. LLVM_DEBUG(dbgs() << dbgPref << "Rewrite linalg.copy as vector.transfer_read + " "vector.transfer_write: " << *op); Value zero = std_constant_index(0); Value viewInput = copyOp.input(); Value viewOutput = copyOp.output(); Value vector; if (VectorType inputType = extractVectorTypeFromScalarView(viewInput)) { SmallVector indicesInput(inputType.getRank(), zero); if (copyOp.inputPermutation()) vector = vector_transfer_read( extractVectorTypeFromScalarView(viewInput), viewInput, indicesInput, copyOp.inputPermutation().getValue()); else vector = vector_transfer_read(extractVectorTypeFromScalarView(viewInput), viewInput, indicesInput); } else { vector = std_load(viewInput).value; } if (VectorType outputType = extractVectorTypeFromScalarView(viewOutput)) { SmallVector indicesOutput(outputType.getRank(), zero); if (copyOp.outputPermutation()) vector_transfer_write(vector, viewOutput, indicesOutput, copyOp.outputPermutation().getValue()); else vector_transfer_write(vector, viewOutput, indicesOutput); } else { std_store(vector, viewOutput); } return; } assert(succeeded(isContraction(op)) && "Expected contraction"); // Vectorize other ops as vector contraction. // TODO: interface. LLVM_DEBUG(dbgs() << dbgPref << "Rewrite linalg op as vector.contract: " << *op); auto linalgOp = cast(op); Value viewA = linalgOp.getInput(0); Value viewB = linalgOp.getInput(1); Value viewC = linalgOp.getOutputBuffer(0); VectorType vtA = extractVectorTypeFromScalarView(viewA); VectorType vtB = extractVectorTypeFromScalarView(viewB); VectorType vtC = extractVectorTypeFromScalarView(viewC); Value zero = std_constant_index(0); SmallVector indicesA, indicesB, indicesC; if (vtA) indicesA = SmallVector(vtA.getRank(), zero); if (vtB) indicesB = SmallVector(vtB.getRank(), zero); if (vtC) indicesC = SmallVector(vtC.getRank(), zero); Value a = vtA ? vector_transfer_read(vtA, viewA, indicesA).value : std_load(viewA, indicesA).value; Value b = vtB ? vector_transfer_read(vtB, viewB, indicesB).value : std_load(viewB, indicesB).value; Value c = vtC ? vector_transfer_read(vtC, viewC, indicesC).value : std_load(viewC, indicesC).value; Value res = vector_contract(a, b, c, linalgOp.indexing_maps(), linalgOp.iterator_types()); if (vtC) vector_transfer_write(res, viewC, indicesC); else std_store(res, viewC, indicesC); } /// Check whether there is any interleaved use of any `values` between `firstOp` /// and `secondOp`. Conservatively return `true` if any op or value is in a /// different block. static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, ValueRange values) { StringRef dbgPref = "\n[" DEBUG_TYPE "]: "; (void)dbgPref; if (firstOp->getBlock() != secondOp->getBlock() || !firstOp->isBeforeInBlock(secondOp)) { LLVM_DEBUG(llvm::dbgs() << dbgPref << "interleavedUses precondition failed, firstOp: " << *firstOp << ", second op: " << *secondOp); return true; } for (auto v : values) { for (auto &u : v.getUses()) { Operation *owner = u.getOwner(); if (owner == firstOp || owner == secondOp) continue; // TODO: this is too conservative, use dominance info in the future. if (owner->getBlock() == firstOp->getBlock() && (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) continue; LLVM_DEBUG(llvm::dbgs() << dbgPref << " found interleaved op " << *owner << ", firstOp: " << *firstOp << ", second op: " << *secondOp); return true; } } return false; } /// Return the unique subview use of `v` if it is indeed unique, null otherwise. static SubViewOp getSubViewUseIfUnique(Value v) { SubViewOp subViewOp; for (auto &u : v.getUses()) { if (auto newSubViewOp = dyn_cast(u.getOwner())) { if (subViewOp) return SubViewOp(); subViewOp = newSubViewOp; } } return subViewOp; } /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, /// when available. LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { // Transfer into `view`. Value viewOrAlloc = xferOp.memref(); if (!viewOrAlloc.getDefiningOp() && !viewOrAlloc.getDefiningOp()) return failure(); StringRef dbgPref = "\n[" DEBUG_TYPE "]: VTRForwarding: "; (void)dbgPref; LLVM_DEBUG(llvm::dbgs() << dbgPref << viewOrAlloc); // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); if (!subViewOp) return failure(); Value subView = subViewOp.getResult(); LLVM_DEBUG(llvm::dbgs() << dbgPref << "with subView " << subView); // Find the copy into `subView` without interleaved uses. CopyOp copyOp; for (auto &u : subView.getUses()) { if (auto newCopyOp = dyn_cast(u.getOwner())) { if (newCopyOp.getOutputBuffer(0) != subView) continue; LLVM_DEBUG(llvm::dbgs() << dbgPref << "copy candidate " << *newCopyOp); if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) continue; copyOp = newCopyOp; break; } } if (!copyOp) return failure(); LLVM_DEBUG(llvm::dbgs() << dbgPref << "with copy " << *copyOp); // Find the fill into `viewOrAlloc` without interleaved uses before the copy. FillOp maybeFillOp; for (auto &u : viewOrAlloc.getUses()) { if (auto newFillOp = dyn_cast(u.getOwner())) { if (newFillOp.getOutputBuffer(0) != viewOrAlloc) continue; LLVM_DEBUG(llvm::dbgs() << dbgPref << "fill candidate " << *newFillOp); if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) continue; maybeFillOp = newFillOp; break; } } // Ensure padding matches. if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) return failure(); if (maybeFillOp) LLVM_DEBUG(llvm::dbgs() << dbgPref << "with maybeFillOp " << *maybeFillOp); // `in` is the subview that linalg.copy reads. Replace it. Value in = copyOp.getInput(0); // linalg.copy + linalg.fill can be used to create a padded local buffer. // The `masked` attribute is only valid on this padded buffer. // When forwarding to vector.transfer_read, the attribute must be reset // conservatively. Value res = rewriter.create( xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); if (maybeFillOp) rewriter.eraseOp(maybeFillOp); rewriter.eraseOp(copyOp); rewriter.replaceOp(xferOp, res); return success(); } /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, /// when available. LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { // Transfer into `viewOrAlloc`. Value viewOrAlloc = xferOp.memref(); if (!viewOrAlloc.getDefiningOp() && !viewOrAlloc.getDefiningOp()) return failure(); // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); if (!subViewOp) return failure(); Value subView = subViewOp.getResult(); // Find the copy from `subView` without interleaved uses. CopyOp copyOp; for (auto &u : subViewOp.getResult().getUses()) { if (auto newCopyOp = dyn_cast(u.getOwner())) { if (newCopyOp.getInput(0) != subView) continue; if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) continue; copyOp = newCopyOp; break; } } if (!copyOp) return failure(); // `out` is the subview copied into that we replace. Value out = copyOp.getOutputBuffer(0); // Forward vector.transfer into copy. // linalg.copy + linalg.fill can be used to create a padded local buffer. // The `masked` attribute is only valid on this padded buffer. // When forwarding to vector.transfer_write, the attribute must be reset // conservatively. rewriter.create( xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), xferOp.permutation_map(), ArrayAttr()); rewriter.eraseOp(copyOp); rewriter.eraseOp(xferOp); return success(); } template LogicalResult ConvOpVectorization::matchAndRewrite( ConvOp op, PatternRewriter &rewriter) const { Location loc = op.getLoc(); MLIRContext *context = op.getContext(); edsc::ScopedContext scope(rewriter, loc); ShapedType inShapeType = op.getInputShapedType(0); ShapedType kShapeType = op.getInputShapedType(1); ArrayRef inShape = inShapeType.getShape(); ArrayRef kShape = kShapeType.getShape(); if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape()) return failure(); SmallVector mapping; // Fail to apply when the size of not vectorized dimension is not 1 or // when the size of vectorized dimension is not dimSize. for (unsigned i = 0; i < N; i++) { if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) return failure(); if (mask[i] && (inShape[i] != tileSize || kShape[i] != tileSize)) return failure(); if (mask[i]) mapping.push_back(getAffineDimExpr(i, context)); } Value input = op.getInput(0); Value kernel = op.getInput(1); Value output = op.getOutputBuffer(0); unsigned rank = inShapeType.getRank(); unsigned numDims = mapping.size(); Type elemType = inShapeType.getElementType(); auto map = AffineMap::get(rank, 0, mapping, context); SmallVector zeros(rank, std_constant_index(0)); auto vecType = VectorType::get(SmallVector(numDims, tileSize), elemType); auto inputVec = vector_transfer_read(vecType, input, zeros, map); auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map); auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType)); std::array indexingMaps{ AffineMap::getMultiDimIdentityMap(numDims, context), AffineMap::getMultiDimIdentityMap(numDims, context), AffineMap::get(numDims, 0, {}, context)}; std::vector iteratorTypes(numDims, "reduction"); auto result = rewriter.create( loc, inputVec, kernelVec, acc, rewriter.getAffineMapArrayAttr(indexingMaps), rewriter.getStrArrayAttr(iteratorTypes)); rewriter.create(loc, result, output, ValueRange(zeros)); rewriter.eraseOp(op); return success(); } using ConvOpConst = ConvOpVectorization; /// Inserts tiling, promotion and vectorization pattern for ConvOp /// conversion into corresponding pattern lists. template static void populateVectorizationPatterns(OwningRewritePatternList &tilingPatterns, OwningRewritePatternList &promotionPatterns, OwningRewritePatternList &vectorizationPatterns, ArrayRef tileSizes, MLIRContext *context) { constexpr static StringRef kTiledMarker = "TILED"; constexpr static StringRef kPromotedMarker = "PROMOTED"; tilingPatterns.insert>( context, LinalgTilingOptions().setTileSizes(tileSizes), LinalgMarker({}, Identifier::get(kTiledMarker, context))); promotionPatterns.insert>( context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), LinalgMarker(Identifier::get(kTiledMarker, context), Identifier::get(kPromotedMarker, context))); SmallVector mask(N); int offset = tileSizes.size() - N; std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), [](int64_t i) -> bool { return i != ConvOpConst::noTile; }); vectorizationPatterns.insert>(context, mask); } void mlir::linalg::populateConvVectorizationPatterns( MLIRContext *context, SmallVectorImpl &patterns) { const int64_t tileSize = ConvOpConst::tileSize; const int64_t noTile = ConvOpConst::noTile; auto makeTileSizes = [&](unsigned numNoTile, unsigned numTile) { SmallVector result(numNoTile, noTile); result.append(numTile, tileSize); return result; }; OwningRewritePatternList tiling, promotion, vectorization; populateVectorizationPatterns( tiling, promotion, vectorization, makeTileSizes(/*numNoTile=*/1, /*numTile*/ 1), context); populateVectorizationPatterns(tiling, promotion, vectorization, makeTileSizes(3, 2), context); populateVectorizationPatterns(tiling, promotion, vectorization, makeTileSizes(3, 2), context); populateVectorizationPatterns(tiling, promotion, vectorization, makeTileSizes(2, 2), context); populateVectorizationPatterns(tiling, promotion, vectorization, makeTileSizes(4, 3), context); populateVectorizationPatterns(tiling, promotion, vectorization, makeTileSizes(4, 3), context); populateVectorizationPatterns(tiling, promotion, vectorization, makeTileSizes(3, 3), context); populateVectorizationPatterns( tiling, promotion, vectorization, makeTileSizes(5, 4), context); populateVectorizationPatterns( tiling, promotion, vectorization, makeTileSizes(5, 4), context); patterns.push_back(std::move(tiling)); patterns.push_back(std::move(promotion)); patterns.push_back(std::move(vectorization)); }