//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Vectorization transformations. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" #include "mlir/Dialect/Linalg/IR/LinalgOps.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" #include "mlir/Dialect/Utils/StructuredOpsUtils.h" #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" #include "mlir/Dialect/Vector/VectorOps.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Pass/Pass.h" #include "mlir/Support/LLVM.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace mlir; using namespace mlir::edsc; using namespace mlir::edsc::intrinsics; using namespace mlir::linalg; using llvm::dbgs; #define DEBUG_TYPE "linalg-vectorization" static bool hasMultiplyAddBody(linalg::GenericOp op) { auto &r = op.region(); if (!llvm::hasSingleElement(r)) return false; if (!llvm::hasNItems(r.front().begin(), r.front().end(), 3)) return false; using mlir::matchers::m_Val; auto a = m_Val(r.front().getArgument(0)); auto b = m_Val(r.front().getArgument(1)); auto c = m_Val(r.front().getArgument(2)); // TODO: Update this detection once we have matcher support for specifying // that any permutation of operands matches. auto pattern1 = m_Op(m_Op(m_Op(a, b), c)); auto pattern2 = m_Op(m_Op(c, m_Op(a, b))); auto pattern3 = m_Op(m_Op(m_Op(b, a), c)); auto pattern4 = m_Op(m_Op(c, m_Op(b, a))); return pattern1.match(&r.front().back()) || pattern2.match(&r.front().back()) || pattern3.match(&r.front().back()) || pattern4.match(&r.front().back()); } // TODO: Should be Tablegen'd from a single source that generates the op itself. static bool isRowMajorMatmul(linalg::GenericOp genericOp) { return genericOp.getNumInputs() == 2 && genericOp.getNumOutputs() == 1 && isRowMajorMatmul(genericOp.indexing_maps()) && hasMultiplyAddBody(genericOp); } // TODO: This is in fact much more general than just vectorization for matmul // and fill ops. LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { auto linalgOp = cast(op); // All types must be static shape to go to vector. for (Value operand : linalgOp.getInputsAndOutputBuffers()) if (!operand.getType().cast().hasStaticShape()) return failure(); for (Type outputTensorType : linalgOp.getOutputTensorTypes()) if (!outputTensorType.cast().hasStaticShape()) return failure(); if (isa(op) || isa(op)) return success(); auto genericOp = dyn_cast(op); if (!genericOp || !::isRowMajorMatmul(genericOp)) return failure(); // TODO(ntv): non-identity layout. auto isStaticMemRefWithIdentityLayout = [](Value v) { auto m = v.getType().dyn_cast(); if (!m || !m.hasStaticShape() || !m.getAffineMaps().empty()) return false; return true; }; return success(llvm::all_of(genericOp.getInputsAndOutputBuffers(), isStaticMemRefWithIdentityLayout)); } void mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op) { assert(succeeded(vectorizeLinalgOpPrecondition(op))); if (auto convOp = dyn_cast(op)) { // TODO: add a level of indirection to linalg.generic. if (convOp.padding()) llvm_unreachable("Unexpected conv with padding"); } edsc::ScopedContext scope(builder, op->getLoc()); if (auto fillOp = dyn_cast(op)) { // Vectorize fill as a vector.broadcast. LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: Rewrite linalg.fill as vector.broadcast: " << *op << ":\n"); Value memref = vector_type_cast(fillOp.getOutputBuffer(0)); Value dst = std_load(memref); Value res = vector_broadcast(dst.getType(), fillOp.value()); std_store(res, memref); return; } // Vectorize other ops as vector contraction (currently only matmul). LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: Rewrite linalg op as vector.contract: " << *op << ":\n"); auto linalgOp = cast(op); Value a = std_load(vector_type_cast(linalgOp.getInput(0))); Value b = std_load(vector_type_cast(linalgOp.getInput(1))); Value memref = vector_type_cast(linalgOp.getOutputBuffer(0)); Value c = std_load(memref); Value res = vector_contract(a, b, c, linalgOp.indexing_maps(), linalgOp.iterator_types()); std_store(res, memref); }