//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Vectorization transformations. // //===----------------------------------------------------------------------===// #include "mlir/Analysis/SliceAnalysis.h" #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Utils/StructuredOpsUtils.h" #include "mlir/Dialect/Vector/IR/VectorOps.h" #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Pass/Pass.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/RegionUtils.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace mlir; using namespace mlir::linalg; #define DEBUG_TYPE "linalg-vectorization" #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") #define LDBG(X) LLVM_DEBUG(DBGS() << X) /// Try to vectorize `convOp` as a convolution. static FailureOr vectorizeConvolution(OpBuilder &b, LinalgOp convOp); /// Return the unique instance of OpType in `block` if it is indeed unique. /// Return null if none or more than 1 instances exist. template static OpType getSingleOpOfType(Block &block) { OpType res; block.walk([&](OpType op) { if (res) { res = nullptr; return WalkResult::interrupt(); } res = op; return WalkResult::advance(); }); return res; } /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a /// projectedPermutation, compress the unused dimensions to serve as a /// permutation_map for a vector transfer operation. /// For example, given a linalg op such as: /// /// ``` /// %0 = linalg.generic { /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> /// } /// ins(%0 : tensor<2x3x4xf32>) /// outs(%1 : tensor<5x6xf32>) /// ``` /// /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. static AffineMap reindexIndexingMap(AffineMap map) { assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) && "expected projected permutation"); auto res = compressUnusedDims(map); assert(res.getNumDims() == res.getNumResults() && "expected reindexed map with same number of dims and results"); return res; } /// Helper data structure to represent the result of vectorization. /// In certain specific cases, like terminators, we do not want to propagate/ enum VectorizationStatus { /// Op failed to vectorize. Failure = 0, /// Op vectorized and custom function took care of replacement logic NoReplace, /// Op vectorized into a new Op whose results will replace original Op's /// results. NewOp // TODO: support values if Op vectorized to Many-Ops whose results we need to // aggregate for replacement. }; struct VectorizationResult { /// Return status from vectorizing the current op. enum VectorizationStatus status = VectorizationStatus::Failure; /// New vectorized operation to replace the current op. /// Replacement behavior is specified by `status`. Operation *newOp; }; llvm::Optional mlir::linalg::getCombinerOpKind(Operation *combinerOp) { using ::mlir::vector::CombiningKind; if (!combinerOp) return llvm::None; return llvm::TypeSwitch>( combinerOp) .Case( [&](auto op) { return CombiningKind::ADD; }) .Case([&](auto op) { return CombiningKind::AND; }) .Case([&](auto op) { return CombiningKind::MAXSI; }) .Case([&](auto op) { return CombiningKind::MAXF; }) .Case([&](auto op) { return CombiningKind::MINSI; }) .Case([&](auto op) { return CombiningKind::MINF; }) .Case( [&](auto op) { return CombiningKind::MUL; }) .Case([&](auto op) { return CombiningKind::OR; }) .Case([&](auto op) { return CombiningKind::XOR; }) .Default([&](auto op) { return llvm::None; }); } /// Check whether `outputOperand` is a reduction with a single combiner /// operation. Return the combiner operation of the reduction. Return /// nullptr otherwise. Multiple reduction operations would impose an /// ordering between reduction dimensions and is currently unsupported in /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != /// max(min(X)) // TODO: use in LinalgOp verification, there is a circular dependency atm. static Operation *matchLinalgReduction(OpOperand *outputOperand) { auto linalgOp = cast(outputOperand->getOwner()); unsigned outputPos = outputOperand->getOperandNumber() - linalgOp.getNumInputs(); // Only single combiner operations are supported for now. SmallVector combinerOps; if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || combinerOps.size() != 1) return nullptr; // Return the combiner operation. return combinerOps[0]; } /// Broadcast `value` to a vector of `shape` if possible. Return value /// otherwise. static Value broadcastIfNeeded(OpBuilder &b, Value value, ArrayRef shape) { // If no shape to broadcast to, just return `value`. if (shape.empty()) return value; VectorType targetVectorType = VectorType::get(shape, getElementTypeOrSelf(value)); if (vector::isBroadcastableTo(value.getType(), targetVectorType) != vector::BroadcastableToResult::Success) return value; Location loc = b.getInsertionPoint()->getLoc(); return b.createOrFold(loc, targetVectorType, value); } /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This /// assumes that `reductionOp` has two operands and one of them is the reduction /// initial value. static Operation *buildMultiDimReduce(OpBuilder &b, Operation *reduceOp, Value valueToReduce, Value acc, const SmallVector &reductionMask) { auto maybeKind = getCombinerOpKind(reduceOp); assert(maybeKind && "Failed precondition: could not get reduction kind"); return b.create( reduceOp->getLoc(), valueToReduce, acc, reductionMask, *maybeKind); } static SmallVector getReductionMask(LinalgOp linalgOp) { unsigned idx = 0; SmallVector reductionMask(linalgOp.iterator_types().size(), false); for (auto attr : linalgOp.iterator_types()) { if (isReductionIterator(attr)) reductionMask[idx] = true; ++idx; } return reductionMask; } /// Build a vector.transfer_write of `value` into `outputOperand` at indices set /// to all `0`; where `outputOperand` is an output operand of the LinalgOp /// currently being vectorized. If `dest` has null rank, build an memref.store. /// Return the produced value or null if no value is produced. static Value buildVectorWrite(OpBuilder &b, Value value, OpOperand *outputOperand) { Operation *write; Location loc = value.getLoc(); auto linalgOp = cast(outputOperand->getOwner()); ArrayRef shape = linalgOp.getShape(outputOperand); auto vectorType = VectorType::get( shape, getElementTypeOrSelf(outputOperand->get().getType())); if (vectorType.getRank() > 0) { // 0-d case is still special: do not invert the reindexing map. AffineMap map = reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand)); SmallVector transposeShape = applyPermutationMap(inversePermutation(map), vectorType.getShape()); assert(!transposeShape.empty() && "unexpected empty transpose shape"); vectorType = VectorType::get(transposeShape, vectorType.getElementType()); SmallVector indices(linalgOp.getRank(outputOperand), b.create(loc, 0)); value = broadcastIfNeeded(b, value, vectorType.getShape()); write = b.create(loc, value, outputOperand->get(), indices, map); } else { if (!value.getType().isa()) value = b.create(loc, vectorType, value); assert(value.getType() == vectorType && "incorrect type"); write = b.create(loc, value, outputOperand->get(), ValueRange{}); } LDBG("vectorized op: " << *write); if (!write->getResults().empty()) return write->getResult(0); return Value(); } // Custom vectorization function type. Produce a vector form of Operation* // assuming all its vectorized operands are already in the BlockAndValueMapping. // Return nullptr if the Operation cannot be vectorized. using CustomVectorizationHook = std::function; /// Helper function to vectorize the terminator of a `linalgOp`. New result /// vector values are appended to `newResults`. Return /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it /// should not try to map produced operations and instead return the results /// using the `newResults` vector making them available to the /// vectorization algorithm for RAUW. This function is meant to be used as a /// CustomVectorizationHook. static VectorizationResult vectorizeLinalgYield(OpBuilder &b, Operation *op, const BlockAndValueMapping &bvm, LinalgOp linalgOp, SmallVectorImpl &newResults) { auto yieldOp = dyn_cast(op); if (!yieldOp) return VectorizationResult{VectorizationStatus::Failure, nullptr}; for (const auto &outputs : llvm::enumerate(yieldOp.values())) { // TODO: Scan for an opportunity for reuse. // TODO: use a map. Value vectorValue = bvm.lookup(outputs.value()); Value newResult = buildVectorWrite( b, vectorValue, linalgOp.getOutputOperand(outputs.index())); if (newResult) newResults.push_back(newResult); } return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; } /// Helper function to vectorize the index operations of a `linalgOp`. Return /// VectorizationStatus::NewOp to signal the vectorization algorithm that it /// should map the produced operations. This function is meant to be used as a /// CustomVectorizationHook. static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, LinalgOp linalgOp) { IndexOp indexOp = dyn_cast(op); if (!indexOp) return VectorizationResult{VectorizationStatus::Failure, nullptr}; auto loc = indexOp.getLoc(); // Compute the static loop sizes of the index op. auto targetShape = linalgOp.computeStaticLoopSizes(); // Compute a one-dimensional index vector for the index op dimension. SmallVector constantSeq = llvm::to_vector<16>(llvm::seq(0, targetShape[indexOp.dim()])); auto constantOp = b.create(loc, b.getIndexVectorAttr(constantSeq)); // Return the one-dimensional index vector if it lives in the trailing // dimension of the iteration space since the vectorization algorithm in this // case can handle the broadcast. if (indexOp.dim() == targetShape.size() - 1) return VectorizationResult{VectorizationStatus::NewOp, constantOp}; // Otherwise permute the targetShape to move the index dimension last, // broadcast the one-dimensional index vector to the permuted shape, and // finally transpose the broadcasted index vector to undo the permutation. std::swap(targetShape[indexOp.dim()], targetShape.back()); auto broadCastOp = b.create( loc, VectorType::get(targetShape, b.getIndexType()), constantOp); SmallVector transposition = llvm::to_vector<16>(llvm::seq(0, linalgOp.getNumLoops())); std::swap(transposition.back(), transposition[indexOp.dim()]); auto transposeOp = b.create(loc, broadCastOp, transposition); return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; } /// Emit reduction operations if the shapes of the value to reduce is different /// that the result shape. static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op, Value reduceValue, Value initialValue, const BlockAndValueMapping &bvm) { Value reduceVec = bvm.lookup(reduceValue); Value outputVec = bvm.lookup(initialValue); auto reduceType = reduceVec.getType().dyn_cast(); auto outputType = outputVec.getType().dyn_cast(); // Reduce only if needed as the value may already have been reduce for // contraction vectorization. if (!reduceType || (outputType && reduceType.getShape() == outputType.getShape())) return nullptr; SmallVector reductionMask = getReductionMask(linalgOp); return buildMultiDimReduce(b, op, reduceVec, outputVec, reductionMask); } /// Generic vectorization for a single operation `op`, given already vectorized /// operands carried by `bvm`. Vectorization occurs as follows: /// 1. Try to apply any of the `customVectorizationHooks` and return its /// result on success. /// 2. Clone any constant in the current scope without vectorization: each /// consumer of the constant will later determine the shape to which the /// constant needs to be broadcast to. /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose /// of the `customVectorizationHooks` to cover such cases. /// 4. Clone `op` in vector form to a vector of shape prescribed by the first /// operand of maximal rank. Other operands have smaller rank and are /// broadcast accordingly. It is assumed this broadcast is always legal, /// otherwise, it means one of the `customVectorizationHooks` is incorrect. /// /// This function assumes all operands of `op` have been vectorized and are in /// the `bvm` mapping. As a consequence, this function is meant to be called on /// a topologically-sorted list of ops. /// This function does not update `bvm` but returns a VectorizationStatus that /// instructs the caller what `bvm` update needs to occur. static VectorizationResult vectorizeOneOp(OpBuilder &b, LinalgOp linalgOp, Operation *op, const BlockAndValueMapping &bvm, ArrayRef customVectorizationHooks) { LDBG("vectorize op " << *op); // 1. Try to apply any CustomVectorizationHook. if (!customVectorizationHooks.empty()) { for (auto &customFunc : customVectorizationHooks) { VectorizationResult result = customFunc(op, bvm); if (result.status == VectorizationStatus::Failure) continue; return result; } } // 2. Constant ops don't get vectorized but rather broadcasted at their users. // Clone so that the constant is not confined to the linalgOp block . if (isa(op)) return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; // 3. Only ElementwiseMappable are allowed in the generic vectorization. if (!OpTrait::hasElementwiseMappableTraits(op)) return VectorizationResult{VectorizationStatus::Failure, nullptr}; // 4 . Check if the operation is a reduction. SmallVector> reductionOperands; for (Value operand : op->getOperands()) { auto arg = operand.dyn_cast(); if (!arg || arg.getArgNumber() < linalgOp.getNumInputs()) continue; SmallVector reductionOps; Value reduceValue = matchReduction( linalgOp.getRegionOutputArgs(), arg.getArgNumber() - linalgOp.getNumInputs(), reductionOps); if (!reduceValue) continue; reductionOperands.push_back(std::make_pair(reduceValue, operand)); } if (!reductionOperands.empty()) { assert(reductionOperands.size() == 1); Operation *reduceOp = reduceIfNeeded(b, linalgOp, op, reductionOperands[0].first, reductionOperands[0].second, bvm); if (reduceOp) return VectorizationResult{VectorizationStatus::NewOp, reduceOp}; } // 5. Generic vectorization path for ElementwiseMappable ops. // a. first get the first max ranked shape. SmallVector firstMaxRankedShape; for (Value operand : op->getOperands()) { auto vt = bvm.lookup(operand).getType().dyn_cast(); if (vt && firstMaxRankedShape.size() < vt.getShape().size()) firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); } // b. broadcast each op if needed. auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { return firstMaxRankedShape.empty() ? bvm.lookup(v) : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); }); // c. for elementwise, the result is the vector with the firstMaxRankedShape auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { return firstMaxRankedShape.empty() ? t : VectorType::get(firstMaxRankedShape, t); }); // Build and return the new op. return VectorizationResult{ VectorizationStatus::NewOp, b.create(op->getLoc(), op->getName().getIdentifier(), llvm::to_vector<4>(vectorizedOperands), llvm::to_vector<4>(returnTypes), op->getAttrs())}; } /// Generic vectorization function that rewrites the body of a `linalgOp` into /// vector form. Generic vectorization proceeds as follows: /// 1. Verify the `linalgOp` has one non-empty region. /// 2. Values defined above the region are mapped to themselves and will be /// broadcasted on a per-need basis by their consumers. /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d /// load). /// TODO: Reuse opportunities for RAR dependencies. /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration /// indices. /// 5. Iteratively call vectorizeOneOp on the region operations. /// /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is /// performed to the maximal common vector size implied by the `linalgOp` /// iteration space. This eager broadcasting is introduced in the /// permutation_map of the vector.transfer_read operations. The eager /// broadcasting makes it trivial to detrmine where broadcast, transposes and /// reductions should occur, without any bookkeeping. The tradeoff is that, in /// the absence of good canonicalizations, the amount of work increases. /// This is not deemed a problem as we expect canonicalizations and foldings to /// aggressively clean up the useless work. static LogicalResult vectorizeAsLinalgGeneric(OpBuilder &b, LinalgOp linalgOp, SmallVectorImpl &newResults) { Block *block = linalgOp.getBlock(); // 2. Values defined above the region can only be broadcast for now. Make them // map to themselves. BlockAndValueMapping bvm; SetVector valuesSet; mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); if (linalgOp.getNumOutputs() == 0) return failure(); // TODO: the common vector shape is equal to the static loop sizes only when // all indexing maps are projected permutations. For convs and stencils the // logic will need to evolve. SmallVector commonVectorShape = linalgOp.computeStaticLoopSizes(); // 3. Turn all BBArgs into vector.transfer_read / load. Location loc = linalgOp.getLoc(); Value zero = b.create(loc, 0); for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) { BlockArgument bbarg = block->getArgument(opOperand->getOperandNumber()); if (linalgOp.isScalar(opOperand)) { bvm.map(bbarg, opOperand->get()); continue; } VectorType readType; AffineMap map; // TODO: can we keep this simplification? // if (linalgOp.getShape(opOperand).empty()) { // readType = VectorType::get({}, bbarg.getType()); // } else { if (opOperand->getOperandNumber() < linalgOp.getNumInputs()) { map = inverseAndBroadcastProjectedPermutation( linalgOp.getTiedIndexingMap(opOperand)); readType = VectorType::get(commonVectorShape, getElementTypeOrSelf(opOperand->get())); } else { map = inversePermutation( reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand))); readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)), getElementTypeOrSelf(opOperand->get())); } // } auto shape = linalgOp.getShape(opOperand); SmallVector indices(shape.size(), zero); Value readValue = b.create( loc, readType, opOperand->get(), indices, map); // Not all ops support 0-d vectors, extract the scalar for now. // TODO: remove this. if (readValue.getType().cast().getRank() == 0) readValue = b.create(loc, readValue); LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue); bvm.map(bbarg, readValue); bvm.map(opOperand->get(), readValue); } SmallVector hooks; // 4a. Register CustomVectorizationHook for yieldOp. CustomVectorizationHook vectorizeYield = [&](Operation *op, const BlockAndValueMapping &bvm) -> VectorizationResult { return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); }; hooks.push_back(vectorizeYield); // 4b. Register CustomVectorizationHook for indexOp. CustomVectorizationHook vectorizeIndex = [&](Operation *op, const BlockAndValueMapping &bvm) -> VectorizationResult { return vectorizeLinalgIndex(b, op, linalgOp); }; hooks.push_back(vectorizeIndex); // 5. Iteratively call `vectorizeOneOp` to each op in the slice. for (Operation &op : block->getOperations()) { VectorizationResult result = vectorizeOneOp(b, linalgOp, &op, bvm, hooks); if (result.status == VectorizationStatus::Failure) { LDBG("failed to vectorize: " << op); return failure(); } if (result.status == VectorizationStatus::NewOp) { LDBG("new vector op: " << *result.newOp;); bvm.map(op.getResults(), result.newOp->getResults()); } } return success(); } // TODO: probably need some extra checks for reduction followed by consumer // ops that may not commute (e.g. linear reduction + non-linear instructions). static LogicalResult reductionPreconditions(LinalgOp op) { if (llvm::none_of(op.iterator_types(), isReductionIterator)) { LDBG("reduction precondition failed: no reduction iterator"); return failure(); } for (OpOperand *opOperand : op.getOutputOperands()) { Operation *reduceOp = matchLinalgReduction(opOperand); if (!reduceOp || !getCombinerOpKind(reduceOp)) { LDBG("reduction precondition failed: reduction detection failed"); return failure(); } } return success(); } static LogicalResult vectorizeStaticLinalgOpPrecondition(linalg::LinalgOp op) { // All types in the body should be a supported element type for VectorType. for (Operation &innerOp : op->getRegion(0).front()) { if (llvm::any_of(innerOp.getOperandTypes(), [](Type type) { return !VectorType::isValidElementType(type); })) { return failure(); } if (llvm::any_of(innerOp.getResultTypes(), [](Type type) { return !VectorType::isValidElementType(type); })) { return failure(); } } if (isElementwise(op)) return success(); // TODO: isaConvolutionOpInterface that can also infer from generic features. // But we will still need stride/dilation attributes that will be annoying to // reverse-engineer... if (isa(op.getOperation())) return success(); // TODO: the common vector shape is equal to the static loop sizes only when // all indexing maps are projected permutations. For convs and stencils the // logic will need to evolve. if (!allIndexingsAreProjectedPermutation(op)) { LDBG("precondition failed: not projected permutations"); return failure(); } if (failed(reductionPreconditions(op))) { LDBG("precondition failed: reduction preconditions"); return failure(); } return success(); } static LogicalResult vectorizeLinalgOpPrecondition(LinalgOp linalgOp) { // All types must be static shape to go to vector. if (linalgOp.hasDynamicShape()) { LDBG("precondition failed: dynamic shape"); return failure(); } return vectorizeStaticLinalgOpPrecondition(linalgOp); } LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, LinalgOp linalgOp) { if (failed(vectorizeLinalgOpPrecondition(linalgOp))) return failure(); SmallVector results; // TODO: isaConvolutionOpInterface that can also infer from generic // features. Will require stride/dilation attributes inference. FailureOr convOr = vectorizeConvolution(rewriter, linalgOp); if (succeeded(convOr)) { llvm::append_range(results, (*convOr)->getResults()); } else { if (failed(vectorizeLinalgOpPrecondition(linalgOp))) return failure(); LDBG("Vectorize generic by broadcasting to a common shape: " << linalgOp); if (failed(vectorizeAsLinalgGeneric(rewriter, linalgOp, results))) return failure(); } if (!results.empty()) rewriter.replaceOp(linalgOp, results); else rewriter.eraseOp(linalgOp); return success(); } LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter, memref::CopyOp copyOp) { auto srcType = copyOp.getSource().getType().cast(); auto dstType = copyOp.getTarget().getType().cast(); if (!srcType.hasStaticShape() || !dstType.hasStaticShape()) return failure(); auto readType = VectorType::get(srcType.getShape(), getElementTypeOrSelf(srcType)); auto writeType = VectorType::get(dstType.getShape(), getElementTypeOrSelf(dstType)); Location loc = copyOp->getLoc(); Value zero = rewriter.create(loc, 0); SmallVector indices(srcType.getRank(), zero); Value readValue = rewriter.create( loc, readType, copyOp.getSource(), indices, rewriter.getMultiDimIdentityMap(srcType.getRank())); if (readValue.getType().cast().getRank() == 0) { readValue = rewriter.create(loc, readValue); readValue = rewriter.create(loc, writeType, readValue); } Operation *writeValue = rewriter.create( loc, readValue, copyOp.getTarget(), indices, rewriter.getMultiDimIdentityMap(srcType.getRank())); rewriter.replaceOp(copyOp, writeValue->getResults()); return success(); } //----------------------------------------------------------------------------// // Misc. vectorization patterns. //----------------------------------------------------------------------------// /// Helper function that retrieves the value of an IntegerAttr. static int64_t getIntFromAttr(Attribute attr) { return attr.cast().getInt(); } /// Given an ArrayRef of OpFoldResults, return a vector of Values. /// IntegerAttrs are converted to ConstantIndexOps. Other attribute types are /// not supported. static SmallVector ofrToIndexValues(OpBuilder &builder, Location loc, ArrayRef ofrs) { SmallVector result; for (auto o : ofrs) { if (auto val = o.template dyn_cast()) { result.push_back(val); } else { result.push_back(builder.create( loc, getIntFromAttr(o.template get()))); } } return result; } /// Rewrite a tensor::PadOp into a sequence of InitTensorOp, FillOp and /// InsertSliceOp. For now, only constant padding values are supported. /// If there is enough static type information, TransferReadOps and /// TransferWriteOps may be generated instead of InsertSliceOps. struct GenericPadOpVectorizationPattern : public GeneralizePadOpPattern { GenericPadOpVectorizationPattern(MLIRContext *context, PatternBenefit benefit = 1) : GeneralizePadOpPattern(context, tryVectorizeCopy, benefit) {} /// Vectorize the copying of a tensor::PadOp's source. This is possible if /// each dimension size is statically know in the source type or the result /// type (or both). static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, tensor::PadOp padOp, Value dest) { auto sourceType = padOp.getSourceType(); auto resultType = padOp.getResultType(); // Copy cannot be vectorized if pad value is non-constant and source shape // is dynamic. In case of a dynamic source shape, padding must be appended // by TransferReadOp, but TransferReadOp supports only constant padding. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) { if (!sourceType.hasStaticShape()) return failure(); // Create dummy padding value. auto elemType = sourceType.getElementType(); padValue = rewriter.create( padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType)); } SmallVector vecShape; SmallVector readInBounds; SmallVector writeInBounds; for (unsigned i = 0; i < sourceType.getRank(); ++i) { if (!sourceType.isDynamicDim(i)) { vecShape.push_back(sourceType.getDimSize(i)); // Source shape is statically known: Neither read nor write are // out-of- bounds. readInBounds.push_back(true); writeInBounds.push_back(true); } else if (!resultType.isDynamicDim(i)) { // Source shape is not statically known, but result shape is. // Vectorize with size of result shape. This may be larger than the // source size. vecShape.push_back(resultType.getDimSize(i)); // Read may be out-of-bounds because the result size could be larger // than the source size. readInBounds.push_back(false); // Write is out-of-bounds if low padding > 0. writeInBounds.push_back( getConstantIntValue(padOp.getMixedLowPad()[i]) == static_cast(0)); } else { // Neither source nor result dim of padOp is static. Cannot vectorize // the copy. return failure(); } } auto vecType = VectorType::get(vecShape, sourceType.getElementType()); // Generate TransferReadOp. SmallVector readIndices( vecType.getRank(), rewriter.create(padOp.getLoc(), 0)); auto read = rewriter.create( padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue, ArrayRef{readInBounds}); // If `dest` is a FillOp and the TransferWriteOp would overwrite the // entire tensor, write directly to the FillOp's operand. if (llvm::equal(vecShape, resultType.getShape()) && llvm::all_of(writeInBounds, [](bool b) { return b; })) if (auto fill = dest.getDefiningOp()) dest = fill.output(); // Generate TransferWriteOp. auto writeIndices = ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad()); rewriter.replaceOpWithNewOp( padOp, read, dest, writeIndices, ArrayRef{writeInBounds}); return success(); } }; /// Base pattern for rewriting tensor::PadOps whose result is consumed by a /// given operation type OpTy. template struct VectorizePadOpUserPattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(tensor::PadOp padOp, PatternRewriter &rewriter) const final { bool changed = false; // Insert users in vector, because some users may be replaced/removed. for (auto *user : llvm::to_vector<4>(padOp->getUsers())) if (auto op = dyn_cast(user)) changed |= rewriteUser(rewriter, padOp, op).succeeded(); return success(changed); } protected: virtual LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, OpTy op) const = 0; }; /// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.: /// ``` /// %0 = tensor.pad %src ... : tensor to tensor<17x5xf32> /// %r = vector.transfer_read %0[%c0, %c0], %cst /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> /// ``` /// is rewritten to: /// ``` /// %r = vector.transfer_read %src[%c0, %c0], %padding /// {in_bounds = [true, true]} /// : tensor, vector<17x5xf32> /// ``` /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be /// sure that the original padding value %cst was never used. /// /// This rewrite is possible if: /// - `xferOp` has no out-of-bounds dims or mask. /// - Low padding is static 0. /// - Single, scalar padding value. struct PadOpVectorizationWithTransferReadPattern : public VectorizePadOpUserPattern { using VectorizePadOpUserPattern< vector::TransferReadOp>::VectorizePadOpUserPattern; LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, vector::TransferReadOp xferOp) const override { // Low padding must be static 0. if (!padOp.hasZeroLowPad()) return failure(); // Pad value must be a constant. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) return failure(); // Padding value of existing `xferOp` is unused. if (xferOp.hasOutOfBoundsDim() || xferOp.getMask()) return failure(); rewriter.updateRootInPlace(xferOp, [&]() { SmallVector inBounds(xferOp.getVectorType().getRank(), false); xferOp->setAttr(xferOp.getInBoundsAttrName(), rewriter.getBoolArrayAttr(inBounds)); xferOp.getSourceMutable().assign(padOp.getSource()); xferOp.getPaddingMutable().assign(padValue); }); return success(); } }; /// Rewrite use of tensor::PadOp result in TransferWriteOp. /// This pattern rewrites TransferWriteOps that write to a padded tensor /// value, where the same amount of padding is immediately removed again after /// the write. In such cases, the TransferWriteOp can write to the non-padded /// tensor value and apply out-of-bounds masking. E.g.: /// ``` /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] /// : tensor<...> to tensor /// %1 = tensor.pad %0 ... : tensor to tensor<17x5xf32> /// %2 = vector.transfer_write %vec, %1[...] /// : vector<17x5xf32>, tensor<17x5xf32> /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] /// : tensor<17x5xf32> to tensor /// ``` /// is rewritten to: /// ``` /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] /// : tensor<...> to tensor /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, /// tensor /// ``` /// Note: It is important that the ExtractSliceOp %r resizes the result of the /// TransferWriteOp to the same size as the input of the TensorPadOp (or an /// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ /// from %r's old dimensions. /// /// This rewrite is possible if: /// - Low padding is static 0. /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This /// ExtractSliceOp trims the same amount of padding that was added /// beforehand. /// - Single, scalar padding value. struct PadOpVectorizationWithTransferWritePattern : public VectorizePadOpUserPattern { using VectorizePadOpUserPattern< vector::TransferWriteOp>::VectorizePadOpUserPattern; LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, vector::TransferWriteOp xferOp) const override { // TODO: support 0-d corner case. if (xferOp.getTransferRank() == 0) return failure(); // Low padding must be static 0. if (!padOp.hasZeroLowPad()) return failure(); // Pad value must be a constant. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) return failure(); // TransferWriteOp result must be directly consumed by an ExtractSliceOp. if (!xferOp->hasOneUse()) return failure(); auto trimPadding = dyn_cast(*xferOp->user_begin()); if (!trimPadding) return failure(); // Only static zero offsets supported when trimming padding. if (!trimPadding.hasZeroOffset()) return failure(); // trimPadding must remove the amount of padding that was added earlier. if (!hasSameTensorSize(padOp.getSource(), trimPadding)) return failure(); // Insert the new TransferWriteOp at position of the old TransferWriteOp. rewriter.setInsertionPoint(xferOp); SmallVector inBounds(xferOp.getVectorType().getRank(), false); auto newXferOp = rewriter.replaceOpWithNewOp( xferOp, padOp.getSource().getType(), xferOp.getVector(), padOp.getSource(), xferOp.getIndices(), xferOp.getPermutationMapAttr(), xferOp.getMask(), rewriter.getBoolArrayAttr(inBounds)); rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); return success(); } /// Check if `beforePadding` and `afterTrimming` have the same tensor size, /// i.e., same dimensions. /// /// Dimensions may be static, dynamic or mix of both. In case of dynamic /// dimensions, this function tries to infer the (static) tensor size by /// looking at the defining op and utilizing op-specific knowledge. /// /// This is a conservative analysis. In case equal tensor sizes cannot be /// proven statically, this analysis returns `false` even though the tensor /// sizes may turn out to be equal at runtime. bool hasSameTensorSize(Value beforePadding, tensor::ExtractSliceOp afterTrimming) const { // If the input to tensor::PadOp is a CastOp, try with with both CastOp // result and CastOp operand. if (auto castOp = beforePadding.getDefiningOp()) if (hasSameTensorSize(castOp.getSource(), afterTrimming)) return true; auto t1 = beforePadding.getType().dyn_cast(); auto t2 = afterTrimming.getType().dyn_cast(); // Only RankedTensorType supported. if (!t1 || !t2) return false; // Rank of both values must be the same. if (t1.getRank() != t2.getRank()) return false; // All static dimensions must be the same. Mixed cases (e.g., dimension // static in `t1` but dynamic in `t2`) are not supported. for (unsigned i = 0; i < t1.getRank(); ++i) { if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) return false; if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) return false; } // Nothing more to check if all dimensions are static. if (t1.getNumDynamicDims() == 0) return true; // All dynamic sizes must be the same. The only supported case at the // moment is when `beforePadding` is an ExtractSliceOp (or a cast // thereof). // Apart from CastOp, only ExtractSliceOp is supported. auto beforeSlice = beforePadding.getDefiningOp(); if (!beforeSlice) return false; assert(static_cast(t1.getRank()) == beforeSlice.getMixedSizes().size()); assert(static_cast(t2.getRank()) == afterTrimming.getMixedSizes().size()); for (unsigned i = 0; i < t1.getRank(); ++i) { // Skip static dimensions. if (!t1.isDynamicDim(i)) continue; auto size1 = beforeSlice.getMixedSizes()[i]; auto size2 = afterTrimming.getMixedSizes()[i]; // Case 1: Same value or same constant int. if (isEqualConstantIntOrValue(size1, size2)) continue; // Other cases: Take a deeper look at defining ops of values. auto v1 = size1.dyn_cast(); auto v2 = size2.dyn_cast(); if (!v1 || !v2) return false; // Case 2: Both values are identical AffineMinOps. (Should not happen if // CSE is run.) auto minOp1 = v1.getDefiningOp(); auto minOp2 = v2.getDefiningOp(); if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() && minOp1.operands() == minOp2.operands()) continue; // Add additional cases as needed. } // All tests passed. return true; } }; /// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.: /// ``` /// %0 = tensor.pad %src ... : tensor to tensor<17x5xf32> /// %r = tensor.insert_slice %0 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] /// : tensor<17x5xf32> into tensor /// ``` /// is rewritten to: /// ``` /// %0 = vector.transfer_read %src[%c0, %c0], %padding /// : tensor, vector<17x5xf32> /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor /// ``` /// /// This rewrite is possible if: /// - Low padding is static 0. /// - `padOp` result shape is static. /// - The entire padded tensor is inserted. /// (Implies that sizes of `insertOp` are all static.) /// - Only unit strides in `insertOp`. /// - Single, scalar padding value. /// - `padOp` result not used as destination. struct PadOpVectorizationWithInsertSlicePattern : public VectorizePadOpUserPattern { using VectorizePadOpUserPattern< tensor::InsertSliceOp>::VectorizePadOpUserPattern; LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, tensor::InsertSliceOp insertOp) const override { // Low padding must be static 0. if (!padOp.hasZeroLowPad()) return failure(); // Only unit stride supported. if (!insertOp.hasUnitStride()) return failure(); // Pad value must be a constant. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) return failure(); // Dynamic shapes not supported. if (!padOp.getResult().getType().cast().hasStaticShape()) return failure(); // Pad result not used as destination. if (insertOp.getDest() == padOp.getResult()) return failure(); auto vecType = VectorType::get(padOp.getType().getShape(), padOp.getType().getElementType()); unsigned vecRank = vecType.getRank(); unsigned tensorRank = insertOp.getType().getRank(); // Check if sizes match: Insert the entire tensor into most minor dims. // (No permutations allowed.) SmallVector expectedSizes(tensorRank - vecRank, 1); expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); if (!llvm::all_of( llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); })) return failure(); // Insert the TransferReadOp and TransferWriteOp at the position of the // InsertSliceOp. rewriter.setInsertionPoint(insertOp); // Generate TransferReadOp: Read entire source tensor and add high // padding. SmallVector readIndices( vecRank, rewriter.create(padOp.getLoc(), 0)); auto read = rewriter.create( padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue); // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at // specified offsets. Write is fully in-bounds because a InsertSliceOp's // source must fit into the destination at the specified offsets. auto writeIndices = ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); SmallVector inBounds(vecRank, true); rewriter.replaceOpWithNewOp( insertOp, read, insertOp.getDest(), writeIndices, ArrayRef{inBounds}); return success(); } }; void mlir::linalg::populatePadOpVectorizationPatterns( RewritePatternSet &patterns, PatternBenefit baseBenefit) { patterns.add(patterns.getContext(), baseBenefit); // Try these specialized patterns first before resorting to the generic one. patterns.add( patterns.getContext(), baseBenefit.getBenefit() + 1); } //----------------------------------------------------------------------------// // Forwarding patterns //----------------------------------------------------------------------------// /// Check whether there is any interleaved use of any `values` between /// `firstOp` and `secondOp`. Conservatively return `true` if any op or value /// is in a different block. static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, ValueRange values) { if (firstOp->getBlock() != secondOp->getBlock() || !firstOp->isBeforeInBlock(secondOp)) { LDBG("interleavedUses precondition failed, firstOp: " << *firstOp << ", second op: " << *secondOp); return true; } for (auto v : values) { for (auto &u : v.getUses()) { Operation *owner = u.getOwner(); if (owner == firstOp || owner == secondOp) continue; // TODO: this is too conservative, use dominance info in the future. if (owner->getBlock() == firstOp->getBlock() && (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) continue; LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp << ", second op: " << *secondOp); return true; } } return false; } /// Return the unique subview use of `v` if it is indeed unique, null /// otherwise. static memref::SubViewOp getSubViewUseIfUnique(Value v) { memref::SubViewOp subViewOp; for (auto &u : v.getUses()) { if (auto newSubViewOp = dyn_cast(u.getOwner())) { if (subViewOp) return memref::SubViewOp(); subViewOp = newSubViewOp; } } return subViewOp; } /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, /// when available. LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { // TODO: support mask. if (xferOp.getMask()) return failure(); // Transfer into `view`. Value viewOrAlloc = xferOp.getSource(); if (!viewOrAlloc.getDefiningOp() && !viewOrAlloc.getDefiningOp()) return failure(); LDBG(viewOrAlloc); // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); if (!subViewOp) return failure(); Value subView = subViewOp.getResult(); LDBG("with subView " << subView); // Find the copy into `subView` without interleaved uses. memref::CopyOp copyOp; for (auto &u : subView.getUses()) { if (auto newCopyOp = dyn_cast(u.getOwner())) { assert(newCopyOp.getTarget().getType().isa()); if (newCopyOp.getTarget() != subView) continue; LDBG("copy candidate " << *newCopyOp); if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) continue; copyOp = newCopyOp; break; } } if (!copyOp) return failure(); LDBG("with copy " << *copyOp); // Find the fill into `viewOrAlloc` without interleaved uses before the // copy. FillOp maybeFillOp; for (auto &u : viewOrAlloc.getUses()) { if (auto newFillOp = dyn_cast(u.getOwner())) { assert(newFillOp.output().getType().isa()); if (newFillOp.output() != viewOrAlloc) continue; LDBG("fill candidate " << *newFillOp); if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) continue; maybeFillOp = newFillOp; break; } } // Ensure padding matches. if (maybeFillOp && xferOp.getPadding() != maybeFillOp.value()) return failure(); if (maybeFillOp) LDBG("with maybeFillOp " << *maybeFillOp); // `in` is the subview that memref.copy reads. Replace it. Value in = copyOp.getSource(); // memref.copy + linalg.fill can be used to create a padded local buffer. // The `masked` attribute is only valid on this padded buffer. // When forwarding to vector.transfer_read, the attribute must be reset // conservatively. Value res = rewriter.create( xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.getIndices(), xferOp.getPermutationMapAttr(), xferOp.getPadding(), xferOp.getMask(), // in_bounds is explicitly reset /*inBoundsAttr=*/ArrayAttr()); if (maybeFillOp) rewriter.eraseOp(maybeFillOp); rewriter.eraseOp(copyOp); rewriter.replaceOp(xferOp, res); return success(); } /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, /// when available. LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { // TODO: support mask. if (xferOp.getMask()) return failure(); // Transfer into `viewOrAlloc`. Value viewOrAlloc = xferOp.getSource(); if (!viewOrAlloc.getDefiningOp() && !viewOrAlloc.getDefiningOp()) return failure(); // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); if (!subViewOp) return failure(); Value subView = subViewOp.getResult(); // Find the copy from `subView` without interleaved uses. memref::CopyOp copyOp; for (auto &u : subViewOp.getResult().getUses()) { if (auto newCopyOp = dyn_cast(u.getOwner())) { if (newCopyOp.getSource() != subView) continue; if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) continue; copyOp = newCopyOp; break; } } if (!copyOp) return failure(); // `out` is the subview copied into that we replace. assert(copyOp.getTarget().getType().isa()); Value out = copyOp.getTarget(); // Forward vector.transfer into copy. // memref.copy + linalg.fill can be used to create a padded local buffer. // The `masked` attribute is only valid on this padded buffer. // When forwarding to vector.transfer_write, the attribute must be reset // conservatively. rewriter.create( xferOp.getLoc(), xferOp.getVector(), out, xferOp.getIndices(), xferOp.getPermutationMapAttr(), xferOp.getMask(), // in_bounds is explicitly reset /*inBoundsAttr=*/ArrayAttr()); rewriter.eraseOp(copyOp); rewriter.eraseOp(xferOp); return success(); } //===----------------------------------------------------------------------===// // Convolution vectorization patterns //===----------------------------------------------------------------------===// template static void bindShapeDims(ShapedType shapedType) {} template static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) { val = shapedType.getShape()[N]; bindShapeDims(shapedType, vals...); } /// Bind a pack of int& to the leading dimensions of shapedType.getShape(). template static void bindShapeDims(ShapedType shapedType, IntTy &...vals) { bindShapeDims<0>(shapedType, vals...); } namespace { /// Generate a vector implementation for either: /// ``` /// Op def: ( n, w, c, kw, f ) /// Iters: ({Par(), Par(), Par(), Red(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} /// ``` /// kw is unrolled, w is unrolled iff dilationW > 1. /// /// or /// /// ``` /// Op def: ( n, w, c, kw ) /// Iters: ({Par(), Par(), Par(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} /// ``` /// kw is unrolled, w is unrolled iff dilationW > 1. struct Conv1DNwcGenerator : public StructuredGenerator { Conv1DNwcGenerator(OpBuilder &builder, LinalgOp linalgOp, int strideW, int dilationW) : StructuredGenerator(builder, linalgOp), strideW(strideW), dilationW(dilationW) { // Determine whether `linalgOp` can be generated with this generator if (linalgOp.getNumInputs() != 2 || linalgOp.getNumOutputs() != 1) return; lhsShaped = linalgOp.inputs()[0]; rhsShaped = linalgOp.inputs()[1]; resShaped = linalgOp.outputs()[0]; lhsShapedType = lhsShaped.getType().dyn_cast(); rhsShapedType = rhsShaped.getType().dyn_cast(); resShapedType = resShaped.getType().dyn_cast(); if (!lhsShapedType || !rhsShapedType || !resShapedType) return; if (lhsShapedType.getRank() != 3 || (rhsShapedType.getRank() != 2 && rhsShapedType.getRank() != 3) || resShapedType.getRank() != 3) return; // Check for reduction `add` preceded by `mul`. Operation *reduceOp = matchLinalgReduction(linalgOp.getOutputOperand(0)); if (!reduceOp) return; llvm::Optional maybeKind; maybeKind = getCombinerOpKind(reduceOp); if (!maybeKind || *maybeKind != vector::CombiningKind::ADD) return; // Check for single `mul` predecessor. The `mul` operands must be block // arguments or extension of block arguments. Operation *mulOp = nullptr; for (Value operand : reduceOp->getOperands()) { if (operand.isa()) continue; if (mulOp) return; mulOp = operand.getDefiningOp(); if (!mulOp || !isa(mulOp)) return; } if (!mulOp) return; for (Value operand : mulOp->getOperands()) { if (Operation *def = operand.getDefiningOp()) { if (!isa(def)) return; operand = def->getOperand(0); } if (!operand.isa()) return; } // The op is now known to be valid. valid = true; } /// Generate a vector implementation for: /// ``` /// Op def: ( n, w, c, kw, f ) /// Iters: ({Par(), Par(), Par(), Red(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} /// ``` /// kw is always unrolled. /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is /// > 1. FailureOr conv() { if (!valid) return failure(); int64_t nSize, wSize, cSize, kwSize, fSize; // kernel{kw, c, f} bindShapeDims(rhsShapedType, kwSize, cSize, fSize); // out{n, w, f} bindShapeDims(resShapedType, nSize, wSize); vector::TransferWriteOp write; Value zero = builder.create(loc, 0); // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. // When strideW == 1, we can batch the contiguous loads and avoid // unrolling int64_t wSizeStep = strideW == 1 ? wSize : 1; Type lhsEltType = lhsShapedType.getElementType(); Type rhsEltType = rhsShapedType.getElementType(); Type resEltType = resShapedType.getElementType(); VectorType lhsType = VectorType::get( {nSize, // iw = ow * sw + kw * dw - 1 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) // Perform the proper inclusive -> exclusive -> inclusive. ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1, cSize}, lhsEltType); VectorType rhsType = VectorType::get({kwSize, cSize, fSize}, rhsEltType); VectorType resType = VectorType::get({nSize, wSize, fSize}, resEltType); // Read lhs slice of size {w * strideW + kw * dilationW, c, f} @ [0, 0, // 0]. Value lhs = builder.create( loc, lhsType, lhsShaped, ValueRange{zero, zero, zero}); // Read rhs slice of size {kw, c, f} @ [0, 0, 0]. Value rhs = builder.create( loc, rhsType, rhsShaped, ValueRange{zero, zero, zero}); // Read res slice of size {n, w, f} @ [0, 0, 0]. Value res = builder.create( loc, resType, resShaped, ValueRange{zero, zero, zero}); //===------------------------------------------------------------------===// // Begin vector-only rewrite part //===------------------------------------------------------------------===// // Unroll along kw and read slices of lhs and rhs. SmallVector lhsVals, rhsVals, resVals; // Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0]. for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { lhsVals.push_back(builder.create( loc, lhs, /*offsets=*/ArrayRef{0, w * strideW + kw * dilationW, 0}, /*sizes=*/ArrayRef{nSize, wSizeStep, cSize}, /*strides=*/ArrayRef{1, 1, 1})); } } // Extract rhs slice of size {c, f} @ [kw]. for (int64_t kw = 0; kw < kwSize; ++kw) { rhsVals.push_back(builder.create( loc, rhs, /*offsets=*/ArrayRef{kw})); } // Extract res slice: {n, wSizeStep, f} @ [0, w, 0]. for (int64_t w = 0; w < wSize; w += wSizeStep) { resVals.push_back(builder.create( loc, res, /*offsets=*/ArrayRef{0, w, 0}, /*sizes=*/ArrayRef{nSize, wSizeStep, fSize}, /*strides=*/ArrayRef{1, 1, 1})); } auto linearIndex = [&](int64_t kw, int64_t w) { return kw * (wSize / wSizeStep) + w; }; // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f} for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { resVals[w] = conv1dSliceAsContraction( builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); } } // Write back res slice: {n, wSizeStep, f} @ [0, w, 0]. // This does not depend on kw. for (int64_t w = 0; w < wSize; w += wSizeStep) { res = builder.create( loc, resVals[w], res, /*offsets=*/ArrayRef{0, w, 0}, /*strides=*/ArrayRef{1, 1, 1}); } //===------------------------------------------------------------------===// // End vector-only rewrite part //===------------------------------------------------------------------===// // Write back res slice of size {n, w, f} @ [0, 0, 0]. return builder .create(loc, res, resShaped, ValueRange{zero, zero, zero}) .getOperation(); } // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f} Value conv1dSliceAsContraction(OpBuilder &b, Location loc, Value lhs, Value rhs, Value res) { StringRef par = Par().strRef, red = Red().strRef; AffineExpr n, w, f, c; bindDims(ctx, n, w, f, c); return builder.create( loc, lhs, rhs, res, /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}}, /*iteratorTypes=*/ArrayRef{par, par, par, red}); } /// Generate a vector implementation for: /// ``` /// Op def: ( n, w, c, kw) /// Iters: ({Par(), Par(), Par(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} /// ``` /// kw is always unrolled. /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is /// > 1. FailureOr depthwiseConv() { if (!valid) return failure(); int64_t nSize, wSize, cSize, kwSize; // kernel{kw, c} bindShapeDims(rhsShapedType, kwSize, cSize); // out{n, w, c} bindShapeDims(resShapedType, nSize, wSize); vector::TransferWriteOp write; Value zero = builder.create(loc, 0); // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. // When strideW == 1, we can batch the contiguous loads and avoid // unrolling int64_t wSizeStep = strideW == 1 ? wSize : 1; Type lhsEltType = lhsShapedType.getElementType(); Type rhsEltType = rhsShapedType.getElementType(); Type resEltType = resShapedType.getElementType(); VectorType lhsType = VectorType::get( {nSize, // iw = ow * sw + kw * dw - 1 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1, cSize}, lhsEltType); VectorType rhsType = VectorType::get({kwSize, cSize}, rhsEltType); VectorType resType = VectorType::get({nSize, wSize, cSize}, resEltType); // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0, // 0]. Value lhs = builder.create( loc, lhsType, lhsShaped, ValueRange{zero, zero, zero}); // Read rhs slice of size {kw, c} @ [0, 0]. Value rhs = builder.create(loc, rhsType, rhsShaped, ValueRange{zero, zero}); // Read res slice of size {n, w, c} @ [0, 0, 0]. Value res = builder.create( loc, resType, resShaped, ValueRange{zero, zero, zero}); //===------------------------------------------------------------------===// // Begin vector-only rewrite part //===------------------------------------------------------------------===// // Unroll along kw and read slices of lhs and rhs. SmallVector lhsVals, rhsVals, resVals; // Extract lhs slice of size {n, wSizeStep, c} // @ [0, sw * w + dw * kw, 0]. for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { lhsVals.push_back(builder.create( loc, lhs, /*offsets=*/ArrayRef{0, w * strideW + kw * dilationW, 0}, /*sizes=*/ArrayRef{nSize, wSizeStep, cSize}, /*strides=*/ArrayRef{1, 1, 1})); } } // Extract rhs slice of size {c} @ [kw]. for (int64_t kw = 0; kw < kwSize; ++kw) { rhsVals.push_back(builder.create( loc, rhs, /*offsets=*/ArrayRef{kw})); } // Extract res slice: {n, wSizeStep, c} @ [0, w, 0]. for (int64_t w = 0; w < wSize; w += wSizeStep) { resVals.push_back(builder.create( loc, res, /*offsets=*/ArrayRef{0, w, 0}, /*sizes=*/ArrayRef{nSize, wSizeStep, cSize}, /*strides=*/ArrayRef{1, 1, 1})); } auto linearIndex = [&](int64_t kw, int64_t w) { return kw * (wSize / wSizeStep) + w; }; // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c} for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { resVals[w] = depthwiseConv1dSliceAsFma( builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); } } // Write back res slice: {n, wSizeStep, c} @ [0, w, 0]. // This does not depend on kw. for (int64_t w = 0; w < wSize; w += wSizeStep) { res = builder.create( loc, resVals[w], res, /*offsets=*/ArrayRef{0, w, 0}, /*strides=*/ArrayRef{1, 1, 1}); } //===------------------------------------------------------------------===// // End vector-only rewrite part //===------------------------------------------------------------------===// // Write back res slice of size {n, w, c} @ [0, 0, 0]. return builder .create(loc, res, resShaped, ValueRange{zero, zero, zero}) .getOperation(); } /// Lower lhs{n, w, c} * rhs{c} -> res{n, w, c} to fma. Value depthwiseConv1dSliceAsFma(OpBuilder &b, Location loc, Value lhs, Value rhs, Value res) { Value bcast = builder.create(loc, res.getType(), rhs); return b.create(loc, lhs, bcast, res); } /// Entry point that transposes into the common form: /// {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} FailureOr generateConv() { AffineExpr n, w, f, kw, c; bindDims(ctx, n, w, f, kw, c); if (!iters({Par(), Par(), Par(), Red(), Red()})) return failure(); // No transposition needed. if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, /*rhsIndex*/ {kw, c, f}, /*resIndex*/ {n, w, f}})) return conv(); return failure(); } /// Entry point that transposes into the common form: /// {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} FailureOr generateDilatedConv() { AffineExpr n, w, c, kw; bindDims(ctx, n, w, c, kw); if (!iters({Par(), Par(), Par(), Red()})) return failure(); // No transposition needed. if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, /*rhsIndex*/ {kw, c}, /*resIndex*/ {n, w, c}})) return depthwiseConv(); return failure(); } private: bool valid = false; int strideW, dilationW; Value lhsShaped, rhsShaped, resShaped; ShapedType lhsShapedType, rhsShapedType, resShapedType; }; } // namespace /// Helper function to vectorize a LinalgOp with convolution semantics. // TODO: extend the generic vectorization to support windows and drop this. static FailureOr vectorizeConvolution(OpBuilder &b, LinalgOp op) { // The ConvolutionOpInterface gives us guarantees of existence for // strides/dilations. However, we do not need to rely on those, we can simply // use them if present, otherwise use the default and let the generic conv. // matcher in the ConvGenerator succeed or fail. auto strides = op->getAttrOfType("strides"); auto dilations = op->getAttrOfType("dilations"); auto stride = strides ? *strides.getValues().begin() : 1; auto dilation = dilations ? *dilations.getValues().begin() : 1; Conv1DNwcGenerator e(b, op, stride, dilation); auto res = e.generateConv(); if (succeeded(res)) return res; return e.generateDilatedConv(); } struct VectorizeConvolution : public OpInterfaceRewritePattern { using OpInterfaceRewritePattern::OpInterfaceRewritePattern; LogicalResult matchAndRewrite(LinalgOp op, PatternRewriter &rewriter) const override { FailureOr resultOrFail = vectorizeConvolution(rewriter, op); if (failed(resultOrFail)) return failure(); Operation *newOp = *resultOrFail; if (newOp->getNumResults() == 0) { rewriter.eraseOp(op.getOperation()); return success(); } assert(newOp->getNumResults() == 1 && "expected single result"); rewriter.replaceOp(op.getOperation(), newOp->getResult(0)); return success(); } }; void mlir::linalg::populateConvolutionVectorizationPatterns( RewritePatternSet &patterns, PatternBenefit benefit) { patterns.add(patterns.getContext(), benefit); }