//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Tiling pass. // //===----------------------------------------------------------------------===// #include #include "PassDetail.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Linalg/Passes.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/Transforms.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Utils/IndexingUtils.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/Transforms/FoldUtils.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "llvm/Support/CommandLine.h" using namespace mlir; using namespace mlir::linalg; using namespace mlir::scf; #define DEBUG_TYPE "linalg-tiling" static bool isZero(Value v) { if (auto cst = v.getDefiningOp()) return cst.value() == 0; return false; } std::tuple, LoopIndexToRangeIndexMap> mlir::linalg::makeTiledLoopRanges(RewriterBase &b, Location loc, AffineMap map, ValueRange allShapeSizes, ValueRange allTileSizes) { assert(allTileSizes.size() == map.getNumResults()); // Apply `map` to get shape sizes in loop order. auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); SmallVector tileSizes(allTileSizes.begin(), allTileSizes.end()); // Traverse the tile sizes, which are in loop order, erase zeros everywhere. LoopIndexToRangeIndexMap loopIndexToRangeIndex; for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { if (isZero(tileSizes[idx - zerosCount])) { shapeSizes.erase(shapeSizes.begin() + idx - zerosCount); tileSizes.erase(tileSizes.begin() + idx - zerosCount); ++zerosCount; continue; } loopIndexToRangeIndex[idx] = idx - zerosCount; } // Create a new range with the applied tile sizes. SmallVector res; for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) res.push_back(Range{b.create(loc, 0), shapeSizes[idx], tileSizes[idx]}); return std::make_tuple(res, loopIndexToRangeIndex); } void mlir::linalg::transformIndexOps( RewriterBase &b, LinalgOp op, SmallVectorImpl &ivs, const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { SmallVector allIvs(op.getNumLoops(), nullptr); for (auto &en : enumerate(allIvs)) { auto rangeIndex = loopIndexToRangeIndex.find(en.index()); if (rangeIndex == loopIndexToRangeIndex.end()) continue; en.value() = ivs[rangeIndex->second]; } addTileLoopIvsToIndexOpResults(b, op, allIvs); } // Insert a tile `source` into the destination tensor `dest`. The position at // which the tile is inserted (as well as size of tile) is taken from a given // ExtractSliceOp `sliceOp`. static Value insertSliceIntoTensor(RewriterBase &b, Location loc, tensor::ExtractSliceOp sliceOp, Value source, Value dest) { return b.create( loc, sliceOp.source().getType(), source, dest, sliceOp.offsets(), sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(), sliceOp.static_sizes(), sliceOp.static_strides()); } template static FailureOr tileLinalgOpImpl(RewriterBase &b, LinalgOp op, ValueRange tileSizes, const LinalgTilingOptions &options) { auto nLoops = op.getNumLoops(); // Initial tile sizes may be too big, only take the first nLoops. tileSizes = tileSizes.take_front(nLoops); if (llvm::all_of(tileSizes, isZero)) { TiledLinalgOp tiledOp; tiledOp.op = cast(b.clone(*op.getOperation())); tiledOp.tensorResults.assign(tiledOp.op->result_begin(), tiledOp.op->result_end()); return tiledOp; } // 1. Build the tiled loop ranges. auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc()); AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap(); if (!shapeSizesToLoopsMap) return failure(); SmallVector loopRanges; LoopIndexToRangeIndexMap loopIndexToRangeIndex; std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges( b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes); SmallVector iteratorTypes; for (const auto &attr : enumerate(op.iterator_types().cast().getValue())) { if (loopIndexToRangeIndex.count(attr.index())) iteratorTypes.push_back(attr.value()); } // If interchangeVector is empty, use the identity. Build the permutation map // otherwise. auto invPermutationMap = AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext()); if (!options.interchangeVector.empty()) { // Based on the pruned iterations (due to zero tile size), recompute the // interchange vector. SmallVector interchangeVector; interchangeVector.reserve(options.interchangeVector.size()); for (auto pos : options.interchangeVector) { auto it = loopIndexToRangeIndex.find(pos); if (it == loopIndexToRangeIndex.end()) continue; interchangeVector.push_back(it->second); } // Interchange vector is guaranteed to be a permutation, // `inversePermutation` must succeed. invPermutationMap = inversePermutation( AffineMap::getPermutationMap(interchangeVector, b.getContext())); assert(invPermutationMap); SmallVector permutation(interchangeVector.begin(), interchangeVector.end()); applyPermutationToVector(loopRanges, permutation); applyPermutationToVector(iteratorTypes, permutation); } // 2. Create the tiled loops. LinalgOp res = op; SmallVector ivs, tensorResults; auto tiledLoopBodyBuilder = [&](OpBuilder &builder, Location loc, ValueRange localIvs, ValueRange operandValuesToUse) -> scf::ValueVector { ivs.assign(localIvs.begin(), localIvs.end()); // When an `interchangeVector` is present, it has been applied to the // loop ranges and the iterator types. Apply its inverse to the // resulting loop `ivs` to match the op definition. SmallVector interchangedIvs; if (!options.interchangeVector.empty()) interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs); else interchangedIvs.assign(ivs.begin(), ivs.end()); // Tile the `operandValuesToUse` that either match the `op` operands // themselves or the tile loop arguments forwarding them. assert(operandValuesToUse.size() == static_cast(op.getNumInputsAndOutputs()) && "expect the number of operands and inputs and outputs to match"); SmallVector valuesToTile = operandValuesToUse; auto sizeBounds = applyMapToValues(b, loc, shapeSizesToLoopsMap, allShapeSizes); SmallVector tiledOperands = makeTiledShapes(b, loc, op, valuesToTile, interchangedIvs, tileSizes, sizeBounds, /*omitPartialTileCheck=*/false); // TODO: use an interface/adaptor to avoid leaking position in // `tiledOperands`. SmallVector resultTensorTypes; for (OpOperand *opOperand : op.getOutputTensorOperands()) resultTensorTypes.push_back( tiledOperands[opOperand->getOperandNumber()].getType()); res = op.clone(b, loc, resultTensorTypes, tiledOperands); // Insert a insert_slice for each output tensor. unsigned resultIdx = 0; for (OpOperand *opOperand : op.getOutputTensorOperands()) { // TODO: use an interface/adaptor to avoid leaking position in // `tiledOperands`. Value outputTensor = tiledOperands[opOperand->getOperandNumber()]; // TODO: Propagate RewriterBase everywhere. IRRewriter rewriter(b); if (auto sliceOp = outputTensor.getDefiningOp()) { tensorResults.push_back(insertSliceIntoTensor(rewriter, loc, sliceOp, res->getResult(resultIdx), sliceOp.source())); } else { tensorResults.push_back(res->getResult(resultIdx)); } ++resultIdx; } return scf::ValueVector(tensorResults.begin(), tensorResults.end()); }; GenerateLoopNest::doit(b, op.getLoc(), loopRanges, op, iteratorTypes, tiledLoopBodyBuilder, options.distribution, options.distributionTypes); // 3. Transform IndexOp results w.r.t. the tiling. transformIndexOps(b, res, ivs, loopIndexToRangeIndex); // 4. Gather the newly created loops and return them with the new op. SmallVector loops; loops.reserve(ivs.size()); for (auto iv : ivs) { if (iv.isa()) { loops.push_back(iv.cast().getOwner()->getParentOp()); assert(loops.back() && "no owner found for induction variable!"); } else { // TODO: Instead of doing this, try to recover the ops used instead of the // loop. loops.push_back(nullptr); } } // 5. Get the tensor results from the outermost loop if available. Otherwise // use the previously captured `tensorResults`. Operation *outermostLoop = nullptr; for (Operation *loop : loops) if ((outermostLoop = loop)) break; return TiledLinalgOp{ res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults}; } template FailureOr static tileLinalgOpImpl( RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options) { OpBuilder::InsertionGuard g(b); b.setInsertionPoint(op); if (!options.tileSizeComputationFunction) return failure(); // Enforce the convention that "tiling by zero" skips tiling a particular // dimension. This convention is significantly simpler to handle instead of // adjusting affine maps to account for missing dimensions. auto nLoops = op.getNumLoops(); SmallVector tileSizeVector = options.tileSizeComputationFunction(b, op); if (tileSizeVector.size() < nLoops) { auto zero = b.create(op.getLoc(), 0); tileSizeVector.append(nLoops - tileSizeVector.size(), zero); } return tileLinalgOpImpl(b, op, tileSizeVector, options); } FailureOr mlir::linalg::tileLinalgOp(RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options) { switch (options.loopType) { case LinalgTilingLoopType::Loops: return tileLinalgOpImpl(b, op, options); case LinalgTilingLoopType::ParallelLoops: return tileLinalgOpImpl(b, op, options); default:; } return failure(); } /// Generate a loop nest around a given tensor::PadOp (for tiling). `newPadOp` /// and `loopNest` are output parameters that return the new (tiled) /// tensor::PadOp and the loop nest. static LogicalResult tilePadOp(RewriterBase &builder, tensor::PadOp op, tensor::PadOp &newPadOp, LoopNest &loopNest, const LinalgTilingOptions &options) { Location loc = op.getLoc(); OpBuilder::InsertionGuard g(builder); builder.setInsertionPoint(op); // Clone tensor::PadOp so that the existing op can be replaced more easily. newPadOp = cast(builder.clone(*op.getOperation())); // Get rank and tile sizes. int64_t rank = op.getResultType().getRank(); SmallVector tileSizes = options.tileSizeComputationFunction(builder, op); // Normalize untiled padding dimensions to 0. Value zero = builder.create(loc, 0); tileSizes.append(rank - tileSizes.size(), zero); // Compute lower and upper bounds of the loop nest. TilingInterface tilingInterface = dyn_cast(op.getOperation()); SmallVector ranges = tilingInterface.getIterationDomain(builder); SmallVector lbs, dims, allDims, steps; for (int64_t i = 0; i < rank; ++i) { allDims.push_back(ranges[i].size); if (!isZero(tileSizes[i])) { lbs.push_back(ranges[i].offset); dims.push_back(ranges[i].size); steps.push_back(tileSizes[i]); } } // Generate loop nest: One loop per dimension. SmallVector destOperand = tilingInterface.getDestinationOperands(builder); loopNest = mlir::scf::buildLoopNest( builder, loc, lbs, /*ubs=*/dims, steps, ValueRange(destOperand), [&](OpBuilder &b, Location loc, ValueRange localIvs, ValueRange iterArgs) -> scf::ValueVector { // Compute offsets and sizes of ExtractSliceOp. SmallVector offsets = computeTileOffsets(b, loc, localIvs, tileSizes); SmallVector sizes = computeTileSizes(b, loc, tileSizes, allDims); // Create ExtractSliceOp: Extract a tile from the tensor::PadOp. // Note: The tensor::PadOp is located outside of the loop nest. It is // later moved inside by ExtractSliceOfPadTensorSwapPattern. auto map = AffineMap::getMultiDimIdentityMap(rank, b.getContext()); Value tiledOutput = makeTiledShape( b, loc, newPadOp->getResult(0), tileSizes, map, offsets, allDims, sizes, /*omitPartialTileCheck=*/false); auto sliceOp = tiledOutput.getDefiningOp(); assert(sliceOp && "expected ExtractSliceOp"); // Insert the tile into the output tensor. // TODO: Propagate RewriterBase everywhere. IRRewriter rewriter(b); Value yieldValue = insertSliceIntoTensor(rewriter, loc, sliceOp, sliceOp, iterArgs[0]); return scf::ValueVector({yieldValue}); }); return success(); } namespace { struct PadOpTilingPattern : public OpRewritePattern { PadOpTilingPattern(MLIRContext *ctx, LinalgTilingOptions opt) : OpRewritePattern(ctx), options(std::move(opt)) {} LogicalResult matchAndRewrite(tensor::PadOp op, PatternRewriter &rewriter) const override { if (op->hasAttr(LinalgTransforms::kLinalgTransformMarker)) return failure(); tensor::PadOp newPadOp; LoopNest loopNest; if (failed(tilePadOp(rewriter, op, newPadOp, loopNest, options))) return failure(); newPadOp->setAttr(LinalgTransforms::kLinalgTransformMarker, rewriter.getUnitAttr()); // Replace all uses of the original tensor::PadOp. rewriter.replaceOp(op, loopNest.getResults()[0]); return success(); } LinalgTilingOptions options; }; } // namespace namespace { /// Helper classes for type list expansion. template class CanonicalizationPatternList; template <> class CanonicalizationPatternList<> { public: static void insert(RewritePatternSet &patterns) {} }; template class CanonicalizationPatternList { public: static void insert(RewritePatternSet &patterns) { OpTy::getCanonicalizationPatterns(patterns, patterns.getContext()); CanonicalizationPatternList::insert(patterns); } }; } // namespace RewritePatternSet mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) { RewritePatternSet patterns(ctx); populateLinalgTilingCanonicalizationPatterns(patterns); return patterns; } void mlir::linalg::populateLinalgTilingCanonicalizationPatterns( RewritePatternSet &patterns) { auto *ctx = patterns.getContext(); AffineApplyOp::getCanonicalizationPatterns(patterns, ctx); AffineForOp::getCanonicalizationPatterns(patterns, ctx); AffineMinOp::getCanonicalizationPatterns(patterns, ctx); AffineMaxOp::getCanonicalizationPatterns(patterns, ctx); arith::ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx); memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx); memref::ViewOp::getCanonicalizationPatterns(patterns, ctx); scf::ForOp::getCanonicalizationPatterns(patterns, ctx); scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx); tensor::CastOp::getCanonicalizationPatterns(patterns, ctx); tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx); tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx); InitTensorOp::getCanonicalizationPatterns(patterns, ctx); tensor::PadOp::getCanonicalizationPatterns(patterns, ctx); ctx->getLoadedDialect()->getCanonicalizationPatterns(patterns); CanonicalizationPatternList< #define GET_OP_LIST #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" >::insert(patterns); } /// Populate the given list with patterns that apply Linalg tiling. static void insertTilingPatterns(RewritePatternSet &patterns, const LinalgTilingOptions &options) { auto *ctx = patterns.getContext(); LinalgTransformationFilter f(ArrayRef{}, StringAttr::get(ctx, "tiled")); TilingPatterns::insert(patterns, options, f); patterns.add(ctx, options); } void mlir::linalg::populatePadTensorTilingPatterns( RewritePatternSet &patterns, const LinalgTilingOptions &options) { auto *ctx = patterns.getContext(); patterns.add(ctx, options); } static void applyExtractSliceOfPadTensorSwapPattern(func::FuncOp funcOp) { MLIRContext *ctx = funcOp.getContext(); RewritePatternSet patterns(ctx); patterns.add(patterns.getContext()); (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); (void)applyPatternsAndFoldGreedily( funcOp, getLinalgTilingCanonicalizationPatterns(ctx)); } namespace { struct LinalgTilingPass : public LinalgTilingBase { LinalgTilingPass() = default; LinalgTilingPass(ArrayRef tileSizes, LinalgTilingLoopType loopType) { this->tileSizes = tileSizes; this->loopType = ""; this->loopTypeEnum = loopType; } void runOnOperation() override { func::FuncOp funcOp = getOperation(); LinalgTilingLoopType type = llvm::StringSwitch(loopType) .Case("for", LinalgTilingLoopType::Loops) .Case("affine", LinalgTilingLoopType::AffineLoops) .Case("parallel", LinalgTilingLoopType::ParallelLoops) .Default(loopTypeEnum); auto options = LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(type); MLIRContext *ctx = funcOp.getContext(); RewritePatternSet patterns(ctx); insertTilingPatterns(patterns, options); scf::populateSCFForLoopCanonicalizationPatterns(patterns); (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); (void)applyPatternsAndFoldGreedily( funcOp, getLinalgTilingCanonicalizationPatterns(ctx)); // Drop the marker. funcOp.walk([](LinalgOp op) { op->removeAttr(LinalgTransforms::kLinalgTransformMarker); }); // Apply swap pattern after generating loop nest and running // canonicalizations. applyExtractSliceOfPadTensorSwapPattern(funcOp); } LinalgTilingLoopType loopTypeEnum; }; } // namespace std::unique_ptr> mlir::createLinalgTilingPass(ArrayRef tileSizes, linalg::LinalgTilingLoopType loopType) { return std::make_unique(tileSizes, loopType); }