//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Tiling pass. // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h" #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" #include "mlir/Dialect/Linalg/Passes.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/MemRef/EDSC/Intrinsics.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/EDSC/Builders.h" #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/Transforms/FoldUtils.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "llvm/Support/CommandLine.h" using namespace mlir; using namespace mlir::edsc; using namespace mlir::edsc::intrinsics; using namespace mlir::linalg; using namespace mlir::scf; #define DEBUG_TYPE "linalg-tiling" static bool isZero(Value v) { if (auto cst = v.getDefiningOp()) return cst.getValue() == 0; return false; } using LoopIndexToRangeIndexMap = DenseMap; // Creates a number of ranges equal to the number of non-zero in `tileSizes`. // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has // one entry per surrounding loop. It uses zero as the convention that a // particular loop is not tiled. This convention simplifies implementations by // avoiding affine map manipulations. // The returned ranges correspond to the loop ranges, in the proper order, that // are tiled and for which new loops will be created. Also the function returns // a map from loop indices of the LinalgOp to the corresponding non-empty range // indices of newly created loops. static std::tuple, LoopIndexToRangeIndexMap> makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map, ValueRange allShapeSizes, ValueRange allTileSizes) { assert(allTileSizes.size() == map.getNumResults()); // Apply `map` to get shape sizes in loop order. auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes); SmallVector tileSizes(allTileSizes.begin(), allTileSizes.end()); // Traverse the tile sizes, which are in loop order, erase zeros everywhere. LoopIndexToRangeIndexMap loopIndexToRangeIndex; for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { if (isZero(tileSizes[idx - zerosCount])) { shapeSizes.erase(shapeSizes.begin() + idx - zerosCount); tileSizes.erase(tileSizes.begin() + idx - zerosCount); ++zerosCount; continue; } loopIndexToRangeIndex[idx] = idx - zerosCount; } // Create a new range with the applied tile sizes. SmallVector res; for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) res.push_back( Range{std_constant_index(0), shapeSizes[idx], tileSizes[idx]}); return std::make_tuple(res, loopIndexToRangeIndex); } // IndexedGenericOp explicitly uses induction variables in the loop body. The // values of the indices that are used in the loop body for any given access of // input/output memref before `subview` op was applied should be invariant with // respect to tiling. // // Therefore, if the operation is tiled, we have to transform the indices // accordingly, i.e. offset them by the values of the corresponding induction // variables that are captured implicitly in the body of the op. // // Example. `linalg.indexed_generic` before tiling: // // #id_2d = (i, j) -> (i, j) // #pointwise_2d_trait = { // indexing_maps = [#id_2d, #id_2d], // iterator_types = ["parallel", "parallel"], // n_views = [1, 1] // } // linalg.indexed_generic #pointwise_2d_trait %operand, %result { // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): // // }: memref<50x100xf32>, memref<50x100xf32> // // After tiling pass with tiles sizes 10 and 25: // // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2) // // %c1 = constant 1 : index // %c0 = constant 0 : index // %c25 = constant 25 : index // %c10 = constant 10 : index // operand_dim_0 = dim %operand, 0 : memref<50x100xf32> // operand_dim_1 = dim %operand, 1 : memref<50x100xf32> // scf.for %k = %c0 to operand_dim_0 step %c10 { // scf.for %l = %c0 to operand_dim_1 step %c25 { // %4 = memref.subview %operand[%k, %l][%c10, %c25][%c1, %c1] // : memref<50x100xf32> to memref // %5 = memref.subview %result[%k, %l][%c10, %c25][%c1, %c1] // : memref<50x100xf32> to memref // linalg.indexed_generic pointwise_2d_trait %4, %5 { // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32): // // Indices `k` and `l` are implicitly captured in the body. // %transformed_i = addi %i, %k : index // index `i` is offset by %k // %transformed_j = addi %j, %l : index // index `j` is offset by %l // // Every use of %i, %j is replaced with %transformed_i, %transformed_j // // }: memref, memref // } // } // // TODO: Investigate whether mixing implicit and explicit indices // does not lead to losing information. static void transformIndexedGenericOpIndices( OpBuilder &b, LinalgOp op, SmallVectorImpl &ivs, const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { auto indexedGenericOp = dyn_cast(op.getOperation()); if (!indexedGenericOp) return; // `linalg.indexed_generic` comes in two flavours. One has a region with a // single block that defines the loop body. The other has a `fun` attribute // that refers to an existing function symbol. The `fun` function call will be // inserted in the loop body in that case. // // TODO: Add support for `linalg.indexed_generic` with `fun` attribute. auto ®ion = indexedGenericOp.region(); if (region.empty()) { indexedGenericOp.emitOpError("expected a region"); return; } auto &block = region.front(); OpBuilder::InsertionGuard g(b); b.setInsertionPointToStart(&block); for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) { auto rangeIndex = loopIndexToRangeIndex.find(i); if (rangeIndex == loopIndexToRangeIndex.end()) continue; Value oldIndex = block.getArgument(i); // Offset the index argument `i` by the value of the corresponding induction // variable and replace all uses of the previous value. Value newIndex = b.create(indexedGenericOp.getLoc(), oldIndex, ivs[rangeIndex->second]); for (auto &use : oldIndex.getUses()) { if (use.getOwner() == newIndex.getDefiningOp()) continue; use.set(newIndex); } } } template static Optional tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes, const LinalgTilingOptions &options) { auto nLoops = op.getNumLoops(); // Initial tile sizes may be too big, only take the first nLoops. tileSizes = tileSizes.take_front(nLoops); if (llvm::all_of(tileSizes, isZero)) return llvm::None; if (auto convOp = dyn_cast(op.getOperation())) { // For conv op only support tiling along batch dimension (which is the first // loop). if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero)) return llvm::None; } // 1. Build the tiled loop ranges. auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc()); AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap(); if (!shapeSizesToLoopsMap) return llvm::None; SmallVector loopRanges; LoopIndexToRangeIndexMap loopIndexToRangeIndex; std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges( b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes); SmallVector iteratorTypes; for (auto attr : enumerate(op.iterator_types().cast().getValue())) { if (loopIndexToRangeIndex.count(attr.index())) iteratorTypes.push_back(attr.value()); } // If interchangeVector is empty, use the identity. Build the permutation map // otherwise. auto invPermutationMap = AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext()); if (!options.interchangeVector.empty()) { // Based on the pruned iterations (due to zero tile size), recompute the // interchange vector. SmallVector interchangeVector; interchangeVector.reserve(options.interchangeVector.size()); for (auto pos : options.interchangeVector) { auto it = loopIndexToRangeIndex.find(pos); if (it == loopIndexToRangeIndex.end()) continue; interchangeVector.push_back(it->second); } // Interchange vector is guaranteed to be a permutation, // `inversePermutation` must succeed. invPermutationMap = inversePermutation( AffineMap::getPermutationMap(interchangeVector, b.getContext())); assert(invPermutationMap); applyPermutationToVector(loopRanges, interchangeVector); applyPermutationToVector(iteratorTypes, interchangeVector); } // 2. Create the tiled loops. LinalgOp res = op; SmallVector ivs, tensorResults; auto outputTensors = op.getOutputTensors(); GenerateLoopNest::doit( loopRanges, /*iterArgInitValues*/ outputTensors, iteratorTypes, [&](ValueRange localIvs, ValueRange iterArgs) -> scf::ValueVector { auto &b = ScopedContext::getBuilderRef(); auto loc = ScopedContext::getLocation(); ivs.assign(localIvs.begin(), localIvs.end()); // When an `interchangeVector` is present, it has been applied to the // loop ranges and the iterator types. Apply its inverse to the // resulting loop `ivs` to match the op definition. SmallVector interchangedIvs; if (!options.interchangeVector.empty()) interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs); else interchangedIvs.assign(ivs.begin(), ivs.end()); assert(op.getNumOutputTensors() == iterArgs.size() && "num output tensors must match number of loop iter arguments"); auto operands = llvm::to_vector<4>(op.getInputs()); SmallVector outputBuffers = op.getOutputBuffers(); // TODO: thanks to simplifying assumption we do not need to worry about // order of output buffers and tensors: there is only ever one kind. assert(outputBuffers.empty() || iterArgs.empty()); operands.append(outputBuffers.begin(), outputBuffers.end()); operands.append(iterArgs.begin(), iterArgs.end()); auto sizeBounds = applyMapToValues(b, loc, shapeSizesToLoopsMap, allShapeSizes); SmallVector tiledOperands = makeTiledShapes( b, loc, op, operands, interchangedIvs, tileSizes, sizeBounds); auto nonShapedOperands = op.getAssumedNonShapedOperands(); tiledOperands.append(nonShapedOperands.begin(), nonShapedOperands.end()); // TODO: use an interface/adaptor to avoid leaking position in // `tiledOperands`. SmallVector resultTensorTypes; for (OpOperand *opOperand : op.getOutputTensorsOpOperands()) resultTensorTypes.push_back( tiledOperands[opOperand->getOperandNumber()].getType()); res = op.clone(b, loc, resultTensorTypes, tiledOperands); // Insert a subtensor_insert for each output tensor. unsigned resultIdx = 0; for (OpOperand *opOperand : op.getOutputTensorsOpOperands()) { // TODO: use an interface/adaptor to avoid leaking position in // `tiledOperands`. Value outputTensor = tiledOperands[opOperand->getOperandNumber()]; if (auto subtensor = outputTensor.getDefiningOp()) { tensorResults.push_back(b.create( loc, subtensor.source().getType(), res->getResult(resultIdx), subtensor.source(), subtensor.offsets(), subtensor.sizes(), subtensor.strides(), subtensor.static_offsets(), subtensor.static_sizes(), subtensor.static_strides())); } else { tensorResults.push_back(res->getResult(resultIdx)); } ++resultIdx; } return scf::ValueVector(tensorResults.begin(), tensorResults.end()); }, options.distribution); // 3. Transforms index arguments of `linalg.generic` w.r.t. to the tiling. transformIndexedGenericOpIndices(b, res, ivs, loopIndexToRangeIndex); // 4. Gather the newly created loops and return them with the new op. SmallVector loops; loops.reserve(ivs.size()); for (auto iv : ivs) { if (iv.isa()) { loops.push_back(iv.cast().getOwner()->getParentOp()); assert(loops.back() && "no owner found for induction variable!"); } else { // TODO: Instead of doing this, try to recover the ops used instead of the // loop. loops.push_back(nullptr); } } // 5. Get the tensor results from the outermost loop if available. Otherwise // use the previously captured `tensorResults`. Operation *outermostLoop = nullptr; for (Operation *loop : loops) if ((outermostLoop = loop)) break; return TiledLinalgOp{ res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults}; } template Optional static tileLinalgOpImpl( OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) { OpBuilder::InsertionGuard g(b); b.setInsertionPoint(op); ScopedContext scope(b, op.getLoc()); if (!options.tileSizeComputationFunction) return llvm::None; // Enforce the convention that "tiling by zero" skips tiling a particular // dimension. This convention is significantly simpler to handle instead of // adjusting affine maps to account for missing dimensions. auto nLoops = op.getNumLoops(); SmallVector tileSizeVector = options.tileSizeComputationFunction(b, op); if (tileSizeVector.size() < nLoops) { auto zero = std_constant_index(0); tileSizeVector.append(nLoops - tileSizeVector.size(), zero); } return tileLinalgOpImpl(b, op, tileSizeVector, options); } Optional mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) { switch (options.loopType) { case LinalgTilingLoopType::Loops: return tileLinalgOpImpl(b, op, options); case LinalgTilingLoopType::ParallelLoops: return tileLinalgOpImpl(b, op, options); default:; } return llvm::None; } namespace { /// Helper classes for type list expansion. template class CanonicalizationPatternList; template <> class CanonicalizationPatternList<> { public: static void insert(RewritePatternSet &patterns) {} }; template class CanonicalizationPatternList { public: static void insert(RewritePatternSet &patterns) { OpTy::getCanonicalizationPatterns(patterns, patterns.getContext()); CanonicalizationPatternList::insert(patterns); } }; /// Helper classes for type list expansion. template class RewritePatternList; template <> class RewritePatternList<> { public: static void insert(RewritePatternSet &patterns, const LinalgTilingOptions &options) {} }; template class RewritePatternList { public: static void insert(RewritePatternSet &patterns, const LinalgTilingOptions &options) { auto *ctx = patterns.getContext(); patterns.add>( ctx, options, LinalgTransformationFilter(ArrayRef{}, Identifier::get("tiled", ctx))); RewritePatternList::insert(patterns, options); } }; } // namespace RewritePatternSet mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) { RewritePatternSet patterns(ctx); populateLinalgTilingCanonicalizationPatterns(patterns); return patterns; } void mlir::linalg::populateLinalgTilingCanonicalizationPatterns( RewritePatternSet &patterns) { auto *ctx = patterns.getContext(); AffineApplyOp::getCanonicalizationPatterns(patterns, ctx); AffineForOp::getCanonicalizationPatterns(patterns, ctx); AffineMinOp::getCanonicalizationPatterns(patterns, ctx); AffineMaxOp::getCanonicalizationPatterns(patterns, ctx); scf::ForOp::getCanonicalizationPatterns(patterns, ctx); scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx); ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx); SubTensorOp::getCanonicalizationPatterns(patterns, ctx); memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx); tensor::CastOp::getCanonicalizationPatterns(patterns, ctx); memref::ViewOp::getCanonicalizationPatterns(patterns, ctx); CanonicalizationPatternList< #define GET_OP_LIST #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" >::insert(patterns); } /// Populate the given list with patterns that apply Linalg tiling. static void insertTilingPatterns(RewritePatternSet &patterns, const LinalgTilingOptions &options) { RewritePatternList::insert(patterns, options); } static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType, FuncOp funcOp, ArrayRef tileSizes) { auto options = LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(loopType); MLIRContext *ctx = funcOp.getContext(); RewritePatternSet patterns(ctx); insertTilingPatterns(patterns, options); (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); (void)applyPatternsAndFoldGreedily( funcOp, getLinalgTilingCanonicalizationPatterns(ctx)); // Drop the marker. funcOp.walk([](LinalgOp op) { op->removeAttr(LinalgTransforms::kLinalgTransformMarker); }); } namespace { struct LinalgTilingPass : public LinalgTilingBase { LinalgTilingPass() = default; LinalgTilingPass(ArrayRef sizes) { tileSizes = sizes; } void runOnFunction() override { applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(), tileSizes); } }; struct LinalgTilingToParallelLoopsPass : public LinalgTilingToParallelLoopsBase { LinalgTilingToParallelLoopsPass() = default; LinalgTilingToParallelLoopsPass(ArrayRef sizes) { tileSizes = sizes; } void runOnFunction() override { applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops, getFunction(), tileSizes); } }; } // namespace std::unique_ptr> mlir::createLinalgTilingPass(ArrayRef tileSizes) { return std::make_unique(tileSizes); } std::unique_ptr> mlir::createLinalgTilingToParallelLoopsPass(ArrayRef tileSizes) { return std::make_unique(tileSizes); }