//===- Loops.cpp - conversion from Linalg named and generic ops to loops --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/Linalg/IR/LinalgOps.h" #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" #include "mlir/Dialect/Linalg/Passes.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/SCF/Transforms.h" #include "mlir/Dialect/StandardOps/Utils/Utils.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/DialectConversion.h" #include "mlir/Transforms/FoldUtils.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "llvm/ADT/TypeSwitch.h" using namespace mlir; using namespace mlir::linalg; static SmallVector makeCanonicalAffineApplies(OpBuilder &b, Location loc, AffineMap map, ArrayRef vals) { if (map.isEmpty()) return {}; assert(map.getNumInputs() == vals.size()); SmallVector res; res.reserve(map.getNumResults()); auto dims = map.getNumDims(); for (auto e : map.getResults()) { auto exprMap = AffineMap::get(dims, map.getNumSymbols(), e); SmallVector operands(vals.begin(), vals.end()); canonicalizeMapAndOperands(&exprMap, &operands); res.push_back(b.create(loc, exprMap, operands)); } return res; } template static void inlineRegionAndEmitStore(OpBuilder &b, Location loc, OpType op, ArrayRef indexedValues, ArrayRef> indexing, ArrayRef outputBuffers) { auto &block = op->getRegion(0).front(); BlockAndValueMapping map; map.map(block.getArguments(), indexedValues); for (auto &op : block.without_terminator()) { auto *newOp = b.clone(op, map); map.map(op.getResults(), newOp->getResults()); } Operation *terminator = block.getTerminator(); for (OpOperand &operand : terminator->getOpOperands()) { Value toStore = map.lookupOrDefault(operand.get()); b.create(loc, toStore, outputBuffers[operand.getOperandNumber()], indexing[operand.getOperandNumber()]); } } // Returns a pair that contains input indices and output indices of a // SingleInputPoolingOp `op`. struct InputAndOutputIndices { SmallVector inputs; SmallVector outputs; }; template static InputAndOutputIndices getInputAndOutputIndices(OpBuilder &b, Location loc, ArrayRef allIvs, SingleInputPoolingOp op) { auto mapsRange = op.indexing_maps().template getAsRange(); auto maps = llvm::to_vector<8>( llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); })); return InputAndOutputIndices{ makeCanonicalAffineApplies(b, loc, maps[0], allIvs), makeCanonicalAffineApplies(b, loc, maps[2], allIvs)}; } /// Emits the MLIR for the scalar part of the generic op by: /// 1. Emitting load ops for each input and output view in order. This is /// achieved by applying the appropriate input or output map to the /// enclosing induction variables. /// 2. Emitting a call to `op.fun()` that takes as arguments the scalars /// from point 1. above. /// 3. Emitting store ops to store the results of 2. to the output /// views. /// /// An example output may resemble: /// /// ``` /// scf.for %i = %c0 to %0 step %c1 { /// scf.for %j = %c0 to %1 step %c1 { /// scf.for %k = %c0 to %4 step %c1 { /// %11 = load %arg0[%i, %j] : /// memref /// %12 = load %arg1[%i, %j, %k] : /// memref /// %13 = load %arg2[%i, %k, %j] : /// memref /// %14:2 = call @foo(%11, %12, %13) : (f32, f32, f32) -> (f32, f32) /// store %14#0, %arg1[%i, %j, %k] : /// memref /// store %14#1, %arg2[%i, %k, %j] : /// memref /// } /// } /// } /// ``` template static void emitScalarImplementation(OpBuilder &b, Location loc, ArrayRef allIvs, LinalgOp linalgOp) { assert(linalgOp.hasBufferSemantics() && "expected linalg op with buffer semantics"); SmallVector indexedValues; indexedValues.reserve(linalgOp.getNumInputsAndOutputs()); auto allIvsPlusDims = SmallVector(allIvs.begin(), allIvs.end()); // TODO: Avoid the loads if the corresponding argument of the // region has no uses. // 1.a. Emit load from input operand or for scalars access the operand itself. for (OpOperand *inputOperand : linalgOp.getInputOperands()) { if (linalgOp.isScalar(inputOperand)) { indexedValues.push_back(inputOperand->get()); continue; } auto indexing = makeCanonicalAffineApplies( b, loc, linalgOp.getTiedIndexingMap(inputOperand), allIvsPlusDims); indexedValues.push_back( b.create(loc, inputOperand->get(), indexing)); } // 1.b. Emit load from output views. for (OpOperand *outputOperand : linalgOp.getOutputOperands()) { SmallVector indexing = makeCanonicalAffineApplies( b, loc, linalgOp.getTiedIndexingMap(outputOperand), allIvsPlusDims); indexedValues.push_back( b.create(loc, outputOperand->get(), indexing)); } // TODO: When a region inliner exists, use it. // 2. Inline region, currently only works for a single basic block. // 3. Emit store. SmallVector, 8> indexing; SmallVector outputBuffers; for (OpOperand *outputOperand : linalgOp.getOutputBufferOperands()) { indexing.push_back(makeCanonicalAffineApplies( b, loc, linalgOp.getTiedIndexingMap(outputOperand), allIvsPlusDims)); outputBuffers.push_back(outputOperand->get()); } inlineRegionAndEmitStore(b, loc, linalgOp, indexedValues, indexing, outputBuffers); } /// Replace the index operations in the body of the loop nest by the matching /// induction variables. static void replaceIndexOpsByInductionVariables(LinalgOp linalgOp, PatternRewriter &rewriter, ArrayRef loopOps) { // Extract the induction variables of the loop nest from outer to inner. SmallVector allIvs; for (Operation *loopOp : loopOps) { llvm::TypeSwitch(loopOp) .Case([&](scf::ParallelOp parallelOp) { allIvs.append(parallelOp.getInductionVars().begin(), parallelOp.getInductionVars().end()); }) .Case([&](scf::ForOp forOp) { allIvs.push_back(forOp.getInductionVar()); }) .Case([&](AffineForOp affineForOp) { allIvs.push_back(affineForOp.getInductionVar()); }) .Default([&](Operation *op) { assert(false && "unexpected op"); }); } assert(linalgOp.getNumLoops() == allIvs.size() && "expected the number of loops and induction variables to match"); // Replace the index operations in the body of the innermost loop op. if (!loopOps.empty()) { LoopLikeOpInterface loopOp = loopOps.back(); for (IndexOp indexOp : llvm::make_early_inc_range(loopOp.getLoopBody().getOps())) rewriter.replaceOp(indexOp, allIvs[indexOp.dim()]); } } template static FailureOr linalgOpToLoopsImpl(PatternRewriter &rewriter, LinalgOp linalgOp) { using LoadOpTy = typename std::conditional::value, AffineLoadOp, memref::LoadOp>::type; using StoreOpTy = typename std::conditional::value, AffineStoreOp, memref::StoreOp>::type; // The flattened loopToOperandRangesMaps is expected to be an invertible // permutation map (which is asserted in the inverse calculation). assert(linalgOp.hasBufferSemantics() && "expected linalg op with buffer semantics"); auto loopRanges = linalgOp.createLoopRanges(rewriter, linalgOp.getLoc()); auto iteratorTypes = llvm::to_vector<4>(linalgOp.iterator_types().getValue()); SmallVector allIvs; GenerateLoopNest::doit( rewriter, linalgOp.getLoc(), loopRanges, linalgOp, iteratorTypes, [&](OpBuilder &b, Location loc, ValueRange ivs, ValueRange operandValuesToUse) -> scf::ValueVector { assert(operandValuesToUse == linalgOp->getOperands() && "expect operands are captured and not passed by loop argument"); allIvs.append(ivs.begin(), ivs.end()); emitScalarImplementation(b, loc, allIvs, linalgOp); return scf::ValueVector{}; }); // Number of loop ops might be different from the number of ivs since some // loops like affine.parallel and scf.parallel have multiple ivs. SetVector loopSet; for (Value iv : allIvs) { if (!iv) return failure(); // The induction variable is a block argument of the entry block of the // loop operation. BlockArgument ivVal = iv.dyn_cast(); if (!ivVal) return failure(); loopSet.insert(ivVal.getOwner()->getParentOp()); } LinalgLoops loops(loopSet.begin(), loopSet.end()); // Replace all index operations in the loop body. replaceIndexOpsByInductionVariables(linalgOp, rewriter, loops); return loops; } namespace { template class LinalgRewritePattern : public RewritePattern { public: LinalgRewritePattern(MLIRContext *context) : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const override { auto linalgOp = dyn_cast(op); if (!isa(op)) return failure(); if (failed(linalgOpToLoopsImpl(rewriter, linalgOp))) return failure(); rewriter.eraseOp(op); return success(); } }; /// Converts tiled_loop to SCF loop nests. All parallel dimensions are collected /// into an scf.parallel loop and all sequential dimensions will result in the /// nested scf.for loop nest. The pattern assumes that a tiled loop with /// iterator_types ["reduction", "parallel", "reduction"] can be reordered. It /// is true for the tiling that is currently suppported by Linalg. struct TiledLoopToSCFPattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(TiledLoopOp tiledLoop, PatternRewriter &rewriter) const override { // Fail conversion if the `tiled_loop` has not been bufferized. if (!tiledLoop.hasBufferSemantics()) return failure(); // Collect loop control parameters for parallel and sequential dimensions. SmallVector seqLBs, seqUBs, seqSteps, seqIVs; SmallVector parLBs, parUBs, parSteps, parIVs; for (auto en : llvm::enumerate( llvm::zip(tiledLoop.lowerBound(), tiledLoop.upperBound(), tiledLoop.step(), tiledLoop.getInductionVars()))) { Value lb, ub, step, iv; std::tie(lb, ub, step, iv) = en.value(); if (tiledLoop.isParallelDimension(en.index())) { parLBs.push_back(lb); parUBs.push_back(ub); parSteps.push_back(step); parIVs.push_back(iv); } else { seqLBs.push_back(lb); seqUBs.push_back(ub); seqSteps.push_back(step); seqIVs.push_back(iv); } } Location loc = tiledLoop.getLoc(); auto generateForLoopNestAndCloneBody = [&](OpBuilder &builder, Location loc, ValueRange ivs) { BlockAndValueMapping bvm; bvm.map(parIVs, ivs); bvm.map(tiledLoop.getRegionInputArgs(), tiledLoop.inputs()); bvm.map(tiledLoop.getRegionOutputArgs(), tiledLoop.outputs()); // If not all dimensions of the tiled loop are parallel, an scf.for loop // nest is generated. if (!seqIVs.empty()) { scf::LoopNest nest = scf::buildLoopNest(builder, loc, seqLBs, seqUBs, seqSteps, [&](OpBuilder &builder, Location loc, ValueRange ivs) { bvm.map(seqIVs, ivs); }); builder.setInsertionPointToStart(nest.loops.back().getBody()); } for (auto &op : tiledLoop.getBody()->without_terminator()) builder.clone(op, bvm); }; if (parIVs.empty()) generateForLoopNestAndCloneBody(rewriter, loc, llvm::None); else rewriter.create(loc, parLBs, parUBs, parSteps, generateForLoopNestAndCloneBody); rewriter.eraseOp(tiledLoop); return success(); } }; /// Local folding pattern for AffineApplyOp that we can apply greedily. /// This replaces AffineApplyOp by the proper value in cases where the /// associated map is trivial. /// A trivial map here is defined as a map with a single result and either: /// 1. Zero operand + returns a single AffineConstantExpr /// 2. One operand + returns a single AffineDimExpr /// 3. One operand + returns a single AffineSymbolExpr // /// In the first case, the AffineApplyOp is replaced by a new constant. In the /// other cases, it is replaced by its unique operand. struct FoldAffineOp : public RewritePattern { FoldAffineOp(MLIRContext *context) : RewritePattern(AffineApplyOp::getOperationName(), 0, context) {} LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) const override { AffineApplyOp affineApplyOp = cast(op); auto map = affineApplyOp.getAffineMap(); if (map.getNumResults() != 1 || map.getNumInputs() > 1) return failure(); AffineExpr expr = map.getResult(0); if (map.getNumInputs() == 0) { if (auto val = expr.dyn_cast()) { rewriter.replaceOpWithNewOp(op, val.getValue()); return success(); } return failure(); } if (expr.dyn_cast() || expr.dyn_cast()) { rewriter.replaceOp(op, op->getOperand(0)); return success(); } return failure(); } }; template static void lowerLinalgToLoopsImpl(FuncOp funcOp) { MLIRContext *context = funcOp.getContext(); RewritePatternSet patterns(context); patterns.add>(context); memref::DimOp::getCanonicalizationPatterns(patterns, context); tensor::DimOp::getCanonicalizationPatterns(patterns, context); AffineApplyOp::getCanonicalizationPatterns(patterns, context); patterns.add(context); // Just apply the patterns greedily. (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); } struct LowerToAffineLoops : public LinalgLowerToAffineLoopsBase { void getDependentDialects(DialectRegistry ®istry) const override { registry.insert(); } void runOnFunction() override { lowerLinalgToLoopsImpl(getFunction()); } }; struct LowerToLoops : public LinalgLowerToLoopsBase { void getDependentDialects(DialectRegistry ®istry) const override { registry.insert(); } void runOnFunction() override { lowerLinalgToLoopsImpl(getFunction()); } }; struct LowerToParallelLoops : public LinalgLowerToParallelLoopsBase { void runOnFunction() override { lowerLinalgToLoopsImpl(getFunction()); } }; struct LowerTiledLoopsToSCF : public LinalgLowerTiledLoopsToSCFBase { void runOnFunction() override { MLIRContext *context = &getContext(); RewritePatternSet patterns(context); populateTiledLoopToSCFPattern(patterns); (void)applyPatternsAndFoldGreedily(getFunction(), std::move(patterns)); } }; } // namespace /// Rewrite a TiledLoopOp with bounds/step that potentially do not divide evenly /// into two TiledLoopOps: One where the step divides the iteration space /// evenly, followed another one for the last (partial) iteration (if any). This /// function only rewrites the `idx`-th loop of the loop nest represented by /// the TiledLoopOp. To peel the entire loop nest, this function must be called /// multiple times. /// /// This function rewrites the given TiledLoopOp in-place and creates a new /// TiledLoopOp for the last iteration. It replaces all uses of the original /// TiledLoopOp with the results of the newly generated one. /// /// The newly generated TiledLoopOp is returned via `result`. The boundary /// at which the loop is split (new upper bound) is returned via `splitBound`. /// The return value indicates whether the TiledLoopOp was rewritten or not. static LogicalResult peelTiledLoop(RewriterBase &b, TiledLoopOp loopOp, int64_t idx, TiledLoopOp &result, Value &splitBound) { Value lb = loopOp.lowerBound()[idx], ub = loopOp.upperBound()[idx], step = loopOp.step()[idx]; auto ubInt = getConstantIntValue(ub); auto loc = loopOp.getLoc(); AffineExpr exprLb, exprUb, exprStep; bindSymbols(b.getContext(), exprLb, exprUb, exprStep); // New upper bound: %ub - (%ub - %lb) mod %step auto modMap = AffineMap::get(0, 3, {exprUb - ((exprUb - exprLb) % exprStep)}); SmallVector operands{lb, ub, step}; mlir::canonicalizeMapAndOperands(&modMap, &operands); modMap = mlir::simplifyAffineMap(modMap); RewriterBase::InsertionGuard guard(b); b.setInsertionPoint(loopOp); splitBound = b.createOrFold(loc, modMap, operands); // No specialization necessary if step already divides upper bound evenly. if (splitBound == ub || (ubInt && ubInt == getConstantIntValue(splitBound))) return failure(); // Create remainder loop. b.setInsertionPointAfter(loopOp); auto remainderLoop = cast(b.clone(*loopOp.getOperation())); loopOp.replaceAllUsesWith(remainderLoop->getResults()); // Outputs: Take tensors from main loop's results. Take memrefs from main // loop's outputs. SmallVector remainderOutputs; for (unsigned o = 0, t = 0; o < loopOp.getNumOutputs(); ++o) { remainderOutputs.push_back(loopOp.outputs()[o].getType().isa() ? loopOp.outputs()[o] : loopOp->getResult(t++)); } remainderLoop.outputsMutable().assign(remainderOutputs); // Set new loop bounds. b.updateRootInPlace(loopOp, [&]() { SmallVector ubs = loopOp.upperBound(); ubs[idx] = splitBound; loopOp.upperBoundMutable().assign(ubs); }); SmallVector lbs = remainderLoop.lowerBound(); lbs[idx] = splitBound; remainderLoop.lowerBoundMutable().assign(lbs); result = remainderLoop; return success(); } template static void rewriteAffineOpAfterPeeling(RewriterBase &rewriter, TiledLoopOp mainLoop, TiledLoopOp remainderLoop, Value mainIv, Value remainderIv, Value ub, Value step) { mainLoop.walk([&](OpTy affineOp) { AffineMap map = affineOp.getAffineMap(); (void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map, affineOp.operands(), IsMin, mainIv, ub, step, /*insideLoop=*/true); }); remainderLoop.walk([&](OpTy affineOp) { AffineMap map = affineOp.getAffineMap(); (void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map, affineOp.operands(), IsMin, remainderIv, ub, step, /*insideLoop=*/false); }); } LogicalResult mlir::linalg::peelAndCanonicalizeTiledLoop(RewriterBase &rewriter, TiledLoopOp loopOp, int64_t idx, TiledLoopOp &result) { int64_t numLoops = loopOp.iterator_types().size(); if (idx < 0 || numLoops <= idx) return failure(); Value ub = loopOp.upperBound()[idx]; TiledLoopOp remainderLoop; Value splitBound; if (failed(peelTiledLoop(rewriter, loopOp, idx, remainderLoop, splitBound))) return failure(); // Rewrite affine.min and affine.max ops. Value mainIv = loopOp.getInductionVars()[idx], step = loopOp.step()[idx], remainderIv = remainderLoop.getInductionVars()[idx]; rewriteAffineOpAfterPeeling( rewriter, loopOp, remainderLoop, mainIv, remainderIv, ub, step); rewriteAffineOpAfterPeeling( rewriter, loopOp, remainderLoop, mainIv, remainderIv, ub, step); result = remainderLoop; return success(); } void mlir::linalg::populateTiledLoopToSCFPattern(RewritePatternSet &patterns) { patterns.add(patterns.getContext()); } std::unique_ptr> mlir::createConvertLinalgTiledLoopsToSCFPass() { return std::make_unique(); } std::unique_ptr> mlir::createConvertLinalgToLoopsPass() { return std::make_unique(); } std::unique_ptr> mlir::createConvertLinalgToParallelLoopsPass() { return std::make_unique(); } std::unique_ptr> mlir::createConvertLinalgToAffineLoopsPass() { return std::make_unique(); } /// Emits a loop nest of `affine.for` with the proper body for `linalgOp`. FailureOr mlir::linalg::linalgOpToAffineLoops(PatternRewriter &rewriter, LinalgOp linalgOp) { return linalgOpToLoopsImpl(rewriter, linalgOp); } /// Emits a loop nest of `scf.for` with the proper body for `linalgOp`. FailureOr mlir::linalg::linalgOpToLoops(PatternRewriter &rewriter, LinalgOp linalgOp) { return linalgOpToLoopsImpl(rewriter, linalgOp); } /// Emits a loop nest of `scf.parallel` with the proper body for `linalgOp`. FailureOr mlir::linalg::linalgOpToParallelLoops(PatternRewriter &rewriter, LinalgOp linalgOp) { return linalgOpToLoopsImpl(rewriter, linalgOp); }