//===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the GPU kernel-related dialect and its operations. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/GPU/IR/GPUDialect.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/DialectImplementation.h" #include "mlir/IR/FunctionImplementation.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Interfaces/SideEffectInterfaces.h" #include "mlir/Transforms/InliningUtils.h" #include "llvm/ADT/TypeSwitch.h" using namespace mlir; using namespace mlir::gpu; #include "mlir/Dialect/GPU/IR/GPUOpsDialect.cpp.inc" //===----------------------------------------------------------------------===// // MMAMatrixType //===----------------------------------------------------------------------===// MMAMatrixType MMAMatrixType::get(ArrayRef shape, Type elementType, StringRef operand) { return Base::get(elementType.getContext(), shape, elementType, operand); } MMAMatrixType MMAMatrixType::getChecked(function_ref emitError, ArrayRef shape, Type elementType, StringRef operand) { return Base::getChecked(emitError, elementType.getContext(), shape, elementType, operand); } unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; } ArrayRef MMAMatrixType::getShape() const { return getImpl()->getShape(); } Type MMAMatrixType::getElementType() const { return getImpl()->elementType; } StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); } bool MMAMatrixType::isValidElementType(Type elementType) { return elementType.isF16() || elementType.isF32(); } LogicalResult MMAMatrixType::verify(function_ref emitError, ArrayRef shape, Type elementType, StringRef operand) { if (!operand.equals("AOp") && !operand.equals("BOp") && !operand.equals("COp")) return emitError() << "operand expected to be one of AOp, BOp or COp"; if (shape.size() != 2) return emitError() << "MMAMatrixType must have exactly two dimensions"; if (!MMAMatrixType::isValidElementType(elementType)) return emitError() << "MMAMatrixType elements must be F16 or F32"; return success(); } //===----------------------------------------------------------------------===// // GPUDialect //===----------------------------------------------------------------------===// /// GPU memory space identifiers. enum GPUMemorySpace { /// Generic memory space identifier. kGenericMemorySpace = 0, /// Global memory space identifier. kGlobalMemorySpace = 1, /// Shared memory space identifier. kSharedMemorySpace = 3 }; bool GPUDialect::isKernel(Operation *op) { UnitAttr isKernelAttr = op->getAttrOfType(getKernelFuncAttrName()); return static_cast(isKernelAttr); } namespace { /// This class defines the interface for handling inlining with gpu /// operations. struct GPUInlinerInterface : public DialectInlinerInterface { using DialectInlinerInterface::DialectInlinerInterface; /// All gpu dialect ops can be inlined. bool isLegalToInline(Operation *, Region *, bool, BlockAndValueMapping &) const final { return true; } }; } // namespace void GPUDialect::initialize() { addTypes(); addTypes(); addOperations< #define GET_OP_LIST #include "mlir/Dialect/GPU/IR/GPUOps.cpp.inc" >(); addAttributes< #define GET_ATTRDEF_LIST #include "mlir/Dialect/GPU/IR/GPUOpsAttributes.cpp.inc" >(); addInterfaces(); } Type GPUDialect::parseType(DialectAsmParser &parser) const { // Parse the main keyword for the type. StringRef keyword; if (parser.parseKeyword(&keyword)) return Type(); MLIRContext *context = getContext(); // Handle 'async token' types. if (keyword == "async.token") return AsyncTokenType::get(context); if (keyword == "mma_matrix") { SMLoc beginLoc = parser.getNameLoc(); // Parse '<'. if (parser.parseLess()) return nullptr; // Parse the size and elementType. SmallVector shape; Type elementType; if (parser.parseDimensionList(shape, /*allowDynamic=*/false) || parser.parseType(elementType)) return nullptr; // Parse ',' if (parser.parseComma()) return nullptr; // Parse operand. std::string operand; if (failed(parser.parseOptionalString(&operand))) return nullptr; // Parse '>'. if (parser.parseGreater()) return nullptr; return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn( parser.getEncodedSourceLoc(beginLoc)), shape, elementType, operand); } parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword); return Type(); } void GPUDialect::printType(Type type, DialectAsmPrinter &os) const { TypeSwitch(type) .Case([&](Type) { os << "async.token"; }) .Case([&](MMAMatrixType fragTy) { os << "mma_matrix<"; auto shape = fragTy.getShape(); for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim) os << *dim << 'x'; os << shape.back() << 'x' << fragTy.getElementType(); os << ", \"" << fragTy.getOperand() << "\"" << '>'; }) .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); }); } LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, NamedAttribute attr) { if (!attr.getValue().isa() || attr.getName() != getContainerModuleAttrName()) return success(); auto module = dyn_cast(op); if (!module) return op->emitError("expected '") << getContainerModuleAttrName() << "' attribute to be attached to '" << ModuleOp::getOperationName() << '\''; auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { // Ignore launches that are nested more or less deep than functions in the // module we are currently checking. if (!launchOp->getParentOp() || launchOp->getParentOp()->getParentOp() != module) return success(); // Ignore launch ops with missing attributes here. The errors will be // reported by the verifiers of those ops. if (!launchOp->getAttrOfType( LaunchFuncOp::getKernelAttrName())) return success(); // Check that `launch_func` refers to a well-formed GPU kernel module. StringAttr kernelModuleName = launchOp.getKernelModuleName(); auto kernelModule = module.lookupSymbol(kernelModuleName); if (!kernelModule) return launchOp.emitOpError() << "kernel module '" << kernelModuleName.getValue() << "' is undefined"; // Check that `launch_func` refers to a well-formed kernel function. Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr()); if (!kernelFunc) return launchOp.emitOpError("kernel function '") << launchOp.kernel() << "' is undefined"; auto kernelConvertedFunction = dyn_cast(kernelFunc); if (!kernelConvertedFunction) { InFlightDiagnostic diag = launchOp.emitOpError() << "referenced kernel '" << launchOp.kernel() << "' is not a function"; diag.attachNote(kernelFunc->getLoc()) << "see the kernel definition here"; return diag; } if (!kernelFunc->getAttrOfType( GPUDialect::getKernelFuncAttrName())) return launchOp.emitOpError("kernel function is missing the '") << GPUDialect::getKernelFuncAttrName() << "' attribute"; // TODO: If the kernel isn't a GPU function (which happens during separate // compilation), do not check type correspondence as it would require the // verifier to be aware of the type conversion. auto kernelGPUFunction = dyn_cast(kernelFunc); if (!kernelGPUFunction) return success(); unsigned actualNumArguments = launchOp.getNumKernelOperands(); unsigned expectedNumArguments = kernelGPUFunction.getNumArguments(); if (expectedNumArguments != actualNumArguments) return launchOp.emitOpError("got ") << actualNumArguments << " kernel operands but expected " << expectedNumArguments; auto functionType = kernelGPUFunction.getFunctionType(); for (unsigned i = 0; i < expectedNumArguments; ++i) { if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) { return launchOp.emitOpError("type of function argument ") << i << " does not match"; } } return success(); }); return walkResult.wasInterrupted() ? failure() : success(); } /// Parses an optional list of async operands with an optional leading keyword. /// (`async`)? (`[` ssa-id-list `]`)? /// /// This method is used by the tablegen assembly format for async ops as well. static ParseResult parseAsyncDependencies( OpAsmParser &parser, Type &asyncTokenType, SmallVectorImpl &asyncDependencies) { auto loc = parser.getCurrentLocation(); if (succeeded(parser.parseOptionalKeyword("async"))) { if (parser.getNumResults() == 0) return parser.emitError(loc, "needs to be named when marked 'async'"); asyncTokenType = parser.getBuilder().getType(); } return parser.parseOperandList(asyncDependencies, OpAsmParser::Delimiter::OptionalSquare); } /// Prints optional async dependencies with its leading keyword. /// (`async`)? (`[` ssa-id-list `]`)? // Used by the tablegen assembly format for several async ops. static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op, Type asyncTokenType, OperandRange asyncDependencies) { if (asyncTokenType) printer << "async"; if (asyncDependencies.empty()) return; if (asyncTokenType) printer << ' '; printer << '['; llvm::interleaveComma(asyncDependencies, printer); printer << ']'; } //===----------------------------------------------------------------------===// // AllReduceOp //===----------------------------------------------------------------------===// LogicalResult gpu::AllReduceOp::verifyRegions() { if (body().empty() != op().has_value()) return emitError("expected either an op attribute or a non-empty body"); if (!body().empty()) { if (body().getNumArguments() != 2) return emitError("expected two region arguments"); for (auto argument : body().getArguments()) { if (argument.getType() != getType()) return emitError("incorrect region argument type"); } unsigned yieldCount = 0; for (Block &block : body()) { if (auto yield = dyn_cast(block.getTerminator())) { if (yield.getNumOperands() != 1) return emitError("expected one gpu.yield operand"); if (yield.getOperand(0).getType() != getType()) return emitError("incorrect gpu.yield type"); ++yieldCount; } } if (yieldCount == 0) return emitError("expected gpu.yield op in region"); } else { gpu::AllReduceOperation opName = *op(); if ((opName == gpu::AllReduceOperation::AND || opName == gpu::AllReduceOperation::OR || opName == gpu::AllReduceOperation::XOR) && !getType().isa()) { return emitError() << '`' << gpu::stringifyAllReduceOperation(opName) << "` accumulator is only compatible with Integer type"; } } return success(); } // TODO: Support optional custom attributes (without dialect prefix). static ParseResult parseAllReduceOperation(AsmParser &parser, AllReduceOperationAttr &attr) { StringRef enumStr; if (!parser.parseOptionalKeyword(&enumStr)) { Optional op = gpu::symbolizeAllReduceOperation(enumStr); if (!op) return parser.emitError(parser.getCurrentLocation(), "invalid op kind"); attr = AllReduceOperationAttr::get(parser.getContext(), *op); } return success(); } static void printAllReduceOperation(AsmPrinter &printer, Operation *op, AllReduceOperationAttr attr) { if (attr) attr.print(printer); } //===----------------------------------------------------------------------===// // AsyncOpInterface //===----------------------------------------------------------------------===// void gpu::addAsyncDependency(Operation *op, Value token) { op->insertOperands(0, {token}); if (!op->template hasTrait()) return; auto attrName = OpTrait::AttrSizedOperandSegments::getOperandSegmentSizeAttr(); auto sizeAttr = op->template getAttrOfType(attrName); // Async dependencies is the only variadic operand. if (!sizeAttr) return; SmallVector sizes(sizeAttr.getValues()); ++sizes.front(); op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes)); } //===----------------------------------------------------------------------===// // LaunchOp //===----------------------------------------------------------------------===// void LaunchOp::build(OpBuilder &builder, OperationState &result, Value gridSizeX, Value gridSizeY, Value gridSizeZ, Value blockSizeX, Value blockSizeY, Value blockSizeZ, Value dynamicSharedMemorySize, Type asyncTokenType, ValueRange asyncDependencies) { result.addOperands(asyncDependencies); if (asyncTokenType) result.types.push_back(builder.getType()); // Add grid and block sizes as op operands, followed by the data operands. result.addOperands( {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); if (dynamicSharedMemorySize) result.addOperands(dynamicSharedMemorySize); // Create a kernel body region with kNumConfigRegionAttributes + N arguments, // where the first kNumConfigRegionAttributes arguments have `index` type and // the rest have the same types as the data operands. Region *kernelRegion = result.addRegion(); Block *body = new Block(); for (unsigned i = 0; i < kNumConfigRegionAttributes; ++i) body->addArgument(builder.getIndexType(), result.location); kernelRegion->push_back(body); SmallVector segmentSizes(8, 1); segmentSizes.front() = asyncDependencies.size(); segmentSizes.back() = dynamicSharedMemorySize ? 1 : 0; result.addAttribute(getOperandSegmentSizeAttr(), builder.getI32VectorAttr(segmentSizes)); } KernelDim3 LaunchOp::getBlockIds() { assert(!body().empty() && "LaunchOp body must not be empty."); auto args = body().getArguments(); return KernelDim3{args[0], args[1], args[2]}; } KernelDim3 LaunchOp::getThreadIds() { assert(!body().empty() && "LaunchOp body must not be empty."); auto args = body().getArguments(); return KernelDim3{args[3], args[4], args[5]}; } KernelDim3 LaunchOp::getGridSize() { assert(!body().empty() && "LaunchOp body must not be empty."); auto args = body().getArguments(); return KernelDim3{args[6], args[7], args[8]}; } KernelDim3 LaunchOp::getBlockSize() { assert(!body().empty() && "LaunchOp body must not be empty."); auto args = body().getArguments(); return KernelDim3{args[9], args[10], args[11]}; } KernelDim3 LaunchOp::getGridSizeOperandValues() { auto operands = getOperands().drop_front(asyncDependencies().size()); return KernelDim3{operands[0], operands[1], operands[2]}; } KernelDim3 LaunchOp::getBlockSizeOperandValues() { auto operands = getOperands().drop_front(asyncDependencies().size()); return KernelDim3{operands[3], operands[4], operands[5]}; } LogicalResult LaunchOp::verifyRegions() { // Kernel launch takes kNumConfigOperands leading operands for grid/block // sizes and transforms them into kNumConfigRegionAttributes region arguments // for block/thread identifiers and grid/block sizes. if (!body().empty()) { if (body().getNumArguments() != LaunchOp::kNumConfigOperands + getNumOperands() - (dynamicSharedMemorySize() ? 1 : 0) - asyncDependencies().size()) return emitOpError("unexpected number of region arguments"); } // Block terminators without successors are expected to exit the kernel region // and must be `gpu.terminator`. for (Block &block : body()) { if (block.empty()) continue; if (block.back().getNumSuccessors() != 0) continue; if (!isa(&block.back())) { return block.back() .emitError() .append("expected '", gpu::TerminatorOp::getOperationName(), "' or a terminator with successors") .attachNote(getLoc()) .append("in '", LaunchOp::getOperationName(), "' body region"); } } if (getNumResults() == 0 && asyncToken()) return emitOpError("needs to be named when async keyword is specified"); return success(); } // Pretty-print the kernel grid/block size assignment as // (%iter-x, %iter-y, %iter-z) in // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) // where %size-* and %iter-* will correspond to the body region arguments. static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, KernelDim3 operands, KernelDim3 ids) { p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; p << size.x << " = " << operands.x << ", "; p << size.y << " = " << operands.y << ", "; p << size.z << " = " << operands.z << ')'; } void LaunchOp::print(OpAsmPrinter &p) { if (asyncToken()) { p << " async"; if (!asyncDependencies().empty()) p << " [" << asyncDependencies() << ']'; } // Print the launch configuration. p << ' ' << getBlocksKeyword(); printSizeAssignment(p, getGridSize(), getGridSizeOperandValues(), getBlockIds()); p << ' ' << getThreadsKeyword(); printSizeAssignment(p, getBlockSize(), getBlockSizeOperandValues(), getThreadIds()); if (dynamicSharedMemorySize()) p << ' ' << getDynamicSharedMemorySizeKeyword() << ' ' << dynamicSharedMemorySize(); p << ' '; p.printRegion(body(), /*printEntryBlockArgs=*/false); p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{ LaunchOp::getOperandSegmentSizeAttr()}); } // Parse the size assignment blocks for blocks and threads. These have the form // (%region_arg, %region_arg, %region_arg) in // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) // where %region_arg are percent-identifiers for the region arguments to be // introduced further (SSA defs), and %operand are percent-identifiers for the // SSA value uses. static ParseResult parseSizeAssignment(OpAsmParser &parser, MutableArrayRef sizes, MutableArrayRef regionSizes, MutableArrayRef indices) { assert(indices.size() == 3 && "space for three indices expected"); SmallVector args; if (parser.parseOperandList(args, OpAsmParser::Delimiter::Paren, /*allowResultNumber=*/false) || parser.parseKeyword("in") || parser.parseLParen()) return failure(); std::move(args.begin(), args.end(), indices.begin()); for (int i = 0; i < 3; ++i) { if (i != 0 && parser.parseComma()) return failure(); if (parser.parseOperand(regionSizes[i], /*allowResultNumber=*/false) || parser.parseEqual() || parser.parseOperand(sizes[i])) return failure(); } return parser.parseRParen(); } /// Parses a Launch operation. /// operation ::= `gpu.launch` (`async` `[` ssa-id-list `]`)? // `blocks` `(` ssa-id-list `)` `in` ssa-reassignment /// `threads` `(` ssa-id-list `)` `in` ssa-reassignment /// region attr-dict? /// ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` ParseResult LaunchOp::parse(OpAsmParser &parser, OperationState &result) { // Sizes of the grid and block. SmallVector sizes(LaunchOp::kNumConfigOperands); MutableArrayRef sizesRef(sizes); // Actual (data) operands passed to the kernel. SmallVector dataOperands; // Region arguments to be created. SmallVector regionArgs( LaunchOp::kNumConfigRegionAttributes); MutableArrayRef regionArgsRef(regionArgs); // Parse optional async dependencies. SmallVector asyncDependencies; Type asyncTokenType; if (failed( parseAsyncDependencies(parser, asyncTokenType, asyncDependencies)) || parser.resolveOperands(asyncDependencies, asyncTokenType, result.operands)) return failure(); if (parser.getNumResults() > 0) result.types.push_back(asyncTokenType); // Parse the size assignment segments: the first segment assigns grid sizes // and defines values for block identifiers; the second segment assigns block // sizes and defines values for thread identifiers. In the region argument // list, identifiers precede sizes, and block-related values precede // thread-related values. if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || parseSizeAssignment(parser, sizesRef.take_front(3), regionArgsRef.slice(6, 3), regionArgsRef.slice(0, 3)) || parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || parseSizeAssignment(parser, sizesRef.drop_front(3), regionArgsRef.slice(9, 3), regionArgsRef.slice(3, 3)) || parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), result.operands)) return failure(); OpAsmParser::UnresolvedOperand dynamicSharedMemorySize; bool hasDynamicSharedMemorySize = false; if (!parser.parseOptionalKeyword( LaunchOp::getDynamicSharedMemorySizeKeyword())) { hasDynamicSharedMemorySize = true; if (parser.parseOperand(dynamicSharedMemorySize) || parser.resolveOperand(dynamicSharedMemorySize, parser.getBuilder().getI32Type(), result.operands)) return failure(); } // Introduce the body region and parse it. The region has // kNumConfigRegionAttributes arguments that correspond to // block/thread identifiers and grid/block sizes, all of the `index` type. Type index = parser.getBuilder().getIndexType(); SmallVector dataTypes( LaunchOp::kNumConfigRegionAttributes, index); SmallVector regionArguments; for (auto ssaValueAndType : llvm::zip(regionArgs, dataTypes)) { OpAsmParser::Argument arg; arg.ssaName = std::get<0>(ssaValueAndType); arg.type = std::get<1>(ssaValueAndType); regionArguments.push_back(arg); } Region *body = result.addRegion(); if (parser.parseRegion(*body, regionArguments) || parser.parseOptionalAttrDict(result.attributes)) return failure(); SmallVector segmentSizes(8, 1); segmentSizes.front() = asyncDependencies.size(); segmentSizes.back() = hasDynamicSharedMemorySize ? 1 : 0; result.addAttribute(LaunchOp::getOperandSegmentSizeAttr(), parser.getBuilder().getI32VectorAttr(segmentSizes)); return success(); } /// Simplify the gpu.launch when the range of a thread or block ID is /// trivially known to be one. struct FoldLaunchArguments : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(LaunchOp op, PatternRewriter &rewriter) const override { // If the range implies a single value for `id`, replace `id`'s uses by // zero. Value zero; bool simplified = false; auto constPropIdUses = [&](Value id, Value size) { // Check if size is trivially one. if (!matchPattern(size, m_One())) return; if (!simplified) { // Create a zero value the first time. OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPointToStart(&op.body().front()); zero = rewriter.create(op.getLoc(), /*value=*/0); } id.replaceAllUsesWith(zero); simplified = true; }; constPropIdUses(op.getBlockIds().x, op.gridSizeX()); constPropIdUses(op.getBlockIds().y, op.gridSizeY()); constPropIdUses(op.getBlockIds().z, op.gridSizeZ()); constPropIdUses(op.getThreadIds().x, op.blockSizeX()); constPropIdUses(op.getThreadIds().y, op.blockSizeY()); constPropIdUses(op.getThreadIds().z, op.blockSizeZ()); return success(simplified); } }; void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites, MLIRContext *context) { rewrites.add(context); } //===----------------------------------------------------------------------===// // LaunchFuncOp //===----------------------------------------------------------------------===// void LaunchFuncOp::build(OpBuilder &builder, OperationState &result, GPUFuncOp kernelFunc, KernelDim3 gridSize, KernelDim3 blockSize, Value dynamicSharedMemorySize, ValueRange kernelOperands, Type asyncTokenType, ValueRange asyncDependencies) { result.addOperands(asyncDependencies); if (asyncTokenType) result.types.push_back(builder.getType()); // Add grid and block sizes as op operands, followed by the data operands. result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x, blockSize.y, blockSize.z}); if (dynamicSharedMemorySize) result.addOperands(dynamicSharedMemorySize); result.addOperands(kernelOperands); auto kernelModule = kernelFunc->getParentOfType(); auto kernelSymbol = SymbolRefAttr::get(kernelModule.getNameAttr(), {SymbolRefAttr::get(kernelFunc.getNameAttr())}); result.addAttribute(getKernelAttrName(), kernelSymbol); SmallVector segmentSizes(9, 1); segmentSizes.front() = asyncDependencies.size(); segmentSizes[segmentSizes.size() - 2] = dynamicSharedMemorySize ? 1 : 0; segmentSizes.back() = static_cast(kernelOperands.size()); result.addAttribute(getOperandSegmentSizeAttr(), builder.getI32VectorAttr(segmentSizes)); } StringAttr LaunchFuncOp::getKernelModuleName() { return kernel().getRootReference(); } StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); } unsigned LaunchFuncOp::getNumKernelOperands() { return operands().size(); } Value LaunchFuncOp::getKernelOperand(unsigned i) { return operands()[i]; } KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { auto operands = getOperands().drop_front(asyncDependencies().size()); return KernelDim3{operands[0], operands[1], operands[2]}; } KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { auto operands = getOperands().drop_front(asyncDependencies().size()); return KernelDim3{operands[3], operands[4], operands[5]}; } LogicalResult LaunchFuncOp::verify() { auto module = (*this)->getParentOfType(); if (!module) return emitOpError("expected to belong to a module"); if (!module->getAttrOfType( GPUDialect::getContainerModuleAttrName())) return emitOpError("expected the closest surrounding module to have the '" + GPUDialect::getContainerModuleAttrName() + "' attribute"); auto kernelAttr = (*this)->getAttrOfType(getKernelAttrName()); if (!kernelAttr) return emitOpError("symbol reference attribute '" + getKernelAttrName() + "' must be specified"); return success(); } static ParseResult parseLaunchFuncOperands( OpAsmParser &parser, SmallVectorImpl &argNames, SmallVectorImpl &argTypes) { if (parser.parseOptionalKeyword("args")) return success(); SmallVector args; if (parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren, /*allowType=*/true)) return failure(); for (auto &arg : args) { argNames.push_back(arg.ssaName); argTypes.push_back(arg.type); } return success(); } static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *, OperandRange operands, TypeRange types) { if (operands.empty()) return; printer << "args("; llvm::interleaveComma(llvm::zip(operands, types), printer, [&](const auto &pair) { printer.printOperand(std::get<0>(pair)); printer << " : "; printer.printType(std::get<1>(pair)); }); printer << ")"; } //===----------------------------------------------------------------------===// // ShuffleOp //===----------------------------------------------------------------------===// void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value value, int32_t offset, int32_t width, ShuffleMode mode) { build(builder, result, value, builder.create(result.location, builder.getI32IntegerAttr(offset)), builder.create(result.location, builder.getI32IntegerAttr(width)), mode); } //===----------------------------------------------------------------------===// // GPUFuncOp //===----------------------------------------------------------------------===// /// Adds a new block argument that corresponds to buffers located in /// workgroup memory. BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type, Location loc) { auto attrName = getNumWorkgroupAttributionsAttrName(); auto attr = (*this)->getAttrOfType(attrName); (*this)->setAttr(attrName, IntegerAttr::get(attr.getType(), attr.getValue() + 1)); return getBody().insertArgument( getFunctionType().getNumInputs() + attr.getInt(), type, loc); } /// Adds a new block argument that corresponds to buffers located in /// private memory. BlockArgument GPUFuncOp::addPrivateAttribution(Type type, Location loc) { // Buffers on the private memory always come after buffers on the workgroup // memory. return getBody().addArgument(type, loc); } void GPUFuncOp::build(OpBuilder &builder, OperationState &result, StringRef name, FunctionType type, TypeRange workgroupAttributions, TypeRange privateAttributions, ArrayRef attrs) { result.addAttribute(SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)); result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); result.addAttribute(getNumWorkgroupAttributionsAttrName(), builder.getI64IntegerAttr(workgroupAttributions.size())); result.addAttributes(attrs); Region *body = result.addRegion(); Block *entryBlock = new Block; // TODO: Allow passing in proper locations here. for (Type argTy : type.getInputs()) entryBlock->addArgument(argTy, result.location); for (Type argTy : workgroupAttributions) entryBlock->addArgument(argTy, result.location); for (Type argTy : privateAttributions) entryBlock->addArgument(argTy, result.location); body->getBlocks().push_back(entryBlock); } /// Parses a GPU function memory attribution. /// /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? /// (`private` `(` ssa-id-and-type-list `)`)? /// /// Note that this function parses only one of the two similar parts, with the /// keyword provided as argument. static ParseResult parseAttributions(OpAsmParser &parser, StringRef keyword, SmallVectorImpl &args) { // If we could not parse the keyword, just assume empty list and succeed. if (failed(parser.parseOptionalKeyword(keyword))) return success(); return parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren, /*allowType=*/true); } /// Parses a GPU function. /// /// ::= `gpu.func` symbol-ref-id `(` argument-list `)` /// (`->` function-result-list)? memory-attribution `kernel`? /// function-attributes? region ParseResult GPUFuncOp::parse(OpAsmParser &parser, OperationState &result) { SmallVector entryArgs; SmallVector resultAttrs; SmallVector resultTypes; bool isVariadic; // Parse the function name. StringAttr nameAttr; if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), result.attributes)) return failure(); auto signatureLocation = parser.getCurrentLocation(); if (failed(function_interface_impl::parseFunctionSignature( parser, /*allowVariadic=*/false, entryArgs, isVariadic, resultTypes, resultAttrs))) return failure(); if (!entryArgs.empty() && entryArgs[0].ssaName.name.empty()) return parser.emitError(signatureLocation) << "gpu.func requires named arguments"; // Construct the function type. More types will be added to the region, but // not to the function type. Builder &builder = parser.getBuilder(); SmallVector argTypes; for (auto &arg : entryArgs) argTypes.push_back(arg.type); auto type = builder.getFunctionType(argTypes, resultTypes); result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); function_interface_impl::addArgAndResultAttrs(builder, result, entryArgs, resultAttrs); // Parse workgroup memory attributions. if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), entryArgs))) return failure(); // Store the number of operands we just parsed as the number of workgroup // memory attributions. unsigned numWorkgroupAttrs = entryArgs.size() - type.getNumInputs(); result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), builder.getI64IntegerAttr(numWorkgroupAttrs)); // Parse private memory attributions. if (failed( parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), entryArgs))) return failure(); // Parse the kernel attribute if present. if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) result.addAttribute(GPUDialect::getKernelFuncAttrName(), builder.getUnitAttr()); // Parse attributes. if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) return failure(); // Parse the region. If no argument names were provided, take all names // (including those of attributions) from the entry block. auto *body = result.addRegion(); return parser.parseRegion(*body, entryArgs); } static void printAttributions(OpAsmPrinter &p, StringRef keyword, ArrayRef values) { if (values.empty()) return; p << ' ' << keyword << '('; llvm::interleaveComma( values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); p << ')'; } void GPUFuncOp::print(OpAsmPrinter &p) { p << ' '; p.printSymbolName(getName()); FunctionType type = getFunctionType(); function_interface_impl::printFunctionSignature(p, *this, type.getInputs(), /*isVariadic=*/false, type.getResults()); printAttributions(p, getWorkgroupKeyword(), getWorkgroupAttributions()); printAttributions(p, getPrivateKeyword(), getPrivateAttributions()); if (isKernel()) p << ' ' << getKernelKeyword(); function_interface_impl::printFunctionAttributes( p, *this, type.getNumInputs(), type.getNumResults(), {getNumWorkgroupAttributionsAttrName(), GPUDialect::getKernelFuncAttrName()}); p << ' '; p.printRegion(getBody(), /*printEntryBlockArgs=*/false); } LogicalResult GPUFuncOp::verifyType() { Type type = getFunctionTypeAttr().getValue(); if (!type.isa()) return emitOpError("requires '" + getTypeAttrName() + "' attribute of function type"); if (isKernel() && getFunctionType().getNumResults() != 0) return emitOpError() << "expected void return type for kernel function"; return success(); } static LogicalResult verifyAttributions(Operation *op, ArrayRef attributions, unsigned memorySpace) { for (Value v : attributions) { auto type = v.getType().dyn_cast(); if (!type) return op->emitOpError() << "expected memref type in attribution"; if (type.getMemorySpaceAsInt() != memorySpace) { return op->emitOpError() << "expected memory space " << memorySpace << " in attribution"; } } return success(); } /// Verifies the body of the function. LogicalResult GPUFuncOp::verifyBody() { unsigned numFuncArguments = getNumArguments(); unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); unsigned numBlockArguments = front().getNumArguments(); if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) return emitOpError() << "expected at least " << numFuncArguments + numWorkgroupAttributions << " arguments to body region"; ArrayRef funcArgTypes = getFunctionType().getInputs(); for (unsigned i = 0; i < numFuncArguments; ++i) { Type blockArgType = front().getArgument(i).getType(); if (funcArgTypes[i] != blockArgType) return emitOpError() << "expected body region argument #" << i << " to be of type " << funcArgTypes[i] << ", got " << blockArgType; } if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), GPUDialect::getWorkgroupAddressSpace())) || failed(verifyAttributions(getOperation(), getPrivateAttributions(), GPUDialect::getPrivateAddressSpace()))) return failure(); return success(); } //===----------------------------------------------------------------------===// // ReturnOp //===----------------------------------------------------------------------===// LogicalResult gpu::ReturnOp::verify() { GPUFuncOp function = (*this)->getParentOfType(); FunctionType funType = function.getFunctionType(); if (funType.getNumResults() != operands().size()) return emitOpError() .append("expected ", funType.getNumResults(), " result operands") .attachNote(function.getLoc()) .append("return type declared here"); for (const auto &pair : llvm::enumerate( llvm::zip(function.getFunctionType().getResults(), operands()))) { Type type; Value operand; std::tie(type, operand) = pair.value(); if (type != operand.getType()) return emitOpError() << "unexpected type `" << operand.getType() << "' for operand #" << pair.index(); } return success(); } //===----------------------------------------------------------------------===// // GPUModuleOp //===----------------------------------------------------------------------===// void GPUModuleOp::build(OpBuilder &builder, OperationState &result, StringRef name) { ensureTerminator(*result.addRegion(), builder, result.location); result.attributes.push_back(builder.getNamedAttr( ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); } ParseResult GPUModuleOp::parse(OpAsmParser &parser, OperationState &result) { StringAttr nameAttr; if (parser.parseSymbolName(nameAttr, mlir::SymbolTable::getSymbolAttrName(), result.attributes) || // If module attributes are present, parse them. parser.parseOptionalAttrDictWithKeyword(result.attributes)) return failure(); // Parse the module body. auto *body = result.addRegion(); if (parser.parseRegion(*body, {})) return failure(); // Ensure that this module has a valid terminator. GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location); return success(); } void GPUModuleOp::print(OpAsmPrinter &p) { p << ' '; p.printSymbolName(getName()); p.printOptionalAttrDictWithKeyword((*this)->getAttrs(), {mlir::SymbolTable::getSymbolAttrName()}); p << ' '; p.printRegion(getRegion(), /*printEntryBlockArgs=*/false, /*printBlockTerminators=*/false); } //===----------------------------------------------------------------------===// // GPUMemcpyOp //===----------------------------------------------------------------------===// LogicalResult MemcpyOp::verify() { auto srcType = src().getType(); auto dstType = dst().getType(); if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType)) return emitOpError("arguments have incompatible element type"); if (failed(verifyCompatibleShape(srcType, dstType))) return emitOpError("arguments have incompatible shape"); return success(); } namespace { /// Erases a common case of copy ops where a destination value is used only by /// the copy op, alloc and dealloc ops. struct EraseTrivialCopyOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(MemcpyOp op, PatternRewriter &rewriter) const override { Value dest = op.dst(); Operation *destDefOp = dest.getDefiningOp(); // `dest` must be defined by an op having Allocate memory effect in order to // perform the folding. if (!destDefOp || !hasSingleEffect(destDefOp, dest)) return failure(); // We can erase `op` iff `dest` has no other use apart from its // use by `op` and dealloc ops. if (llvm::any_of(dest.getUsers(), [op, dest](Operation *user) { return user != op && !hasSingleEffect(user, dest); })) return failure(); // We can perform the folding if and only if op has a single async // dependency and produces an async token as result, or if it does not have // any async dependency and does not produce any async token result. if (op.asyncDependencies().size() > 1 || ((op.asyncDependencies().empty() && op.asyncToken()) || (!op.asyncDependencies().empty() && !op.asyncToken()))) return failure(); rewriter.replaceOp(op, op.asyncDependencies()); return success(); } }; } // end anonymous namespace void MemcpyOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // GPU_SubgroupMmaLoadMatrixOp //===----------------------------------------------------------------------===// /// Return true if the last dimension of the MemRefType has unit stride. Also /// return true for memrefs with no strides. static bool isLastMemrefDimUnitStride(MemRefType type) { int64_t offset; SmallVector strides; if (failed(getStridesAndOffset(type, strides, offset))) { return false; } return strides.back() == 1; } LogicalResult SubgroupMmaLoadMatrixOp::verify() { auto srcType = srcMemref().getType(); auto resType = res().getType(); auto resMatrixType = resType.cast(); auto operand = resMatrixType.getOperand(); auto srcMemrefType = srcType.cast(); auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt(); if (!isLastMemrefDimUnitStride(srcMemrefType)) return emitError( "expected source memref most minor dim must have unit stride"); if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace && srcMemSpace != kGlobalMemorySpace) return emitError( "source memorySpace kGenericMemorySpace, kSharedMemorySpace or " "kGlobalMemorySpace only allowed"); if (!operand.equals("AOp") && !operand.equals("BOp") && !operand.equals("COp")) return emitError("only AOp, BOp and COp can be loaded"); return success(); } //===----------------------------------------------------------------------===// // GPU_SubgroupMmaStoreMatrixOp //===----------------------------------------------------------------------===// LogicalResult SubgroupMmaStoreMatrixOp::verify() { auto srcType = src().getType(); auto dstType = dstMemref().getType(); auto srcMatrixType = srcType.cast(); auto dstMemrefType = dstType.cast(); auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt(); if (!isLastMemrefDimUnitStride(dstMemrefType)) return emitError( "expected destination memref most minor dim must have unit stride"); if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace && dstMemSpace != kGlobalMemorySpace) return emitError("destination memorySpace of kGenericMemorySpace, " "kGlobalMemorySpace or kSharedMemorySpace only allowed"); if (!srcMatrixType.getOperand().equals("COp")) return emitError( "expected the operand matrix being stored to have 'COp' operand type"); return success(); } //===----------------------------------------------------------------------===// // GPU_SubgroupMmaComputeOp //===----------------------------------------------------------------------===// LogicalResult SubgroupMmaComputeOp::verify() { enum OperandMap { A, B, C }; SmallVector opTypes; opTypes.push_back(opA().getType().cast()); opTypes.push_back(opB().getType().cast()); opTypes.push_back(opC().getType().cast()); if (!opTypes[A].getOperand().equals("AOp") || !opTypes[B].getOperand().equals("BOp") || !opTypes[C].getOperand().equals("COp")) return emitError("operands must be in the order AOp, BOp, COp"); ArrayRef aShape, bShape, cShape; aShape = opTypes[A].getShape(); bShape = opTypes[B].getShape(); cShape = opTypes[C].getShape(); if (aShape[1] != bShape[0] || aShape[0] != cShape[0] || bShape[1] != cShape[1]) return emitError("operand shapes do not satisfy matmul constraints"); return success(); } /// This is a common class used for patterns of the form /// "someop(memrefcast) -> someop". It folds the source of any memref.cast /// into the root operation directly. static LogicalResult foldMemRefCast(Operation *op) { bool folded = false; for (OpOperand &operand : op->getOpOperands()) { auto cast = operand.get().getDefiningOp(); if (cast) { operand.set(cast.getOperand()); folded = true; } } return success(folded); } LogicalResult MemcpyOp::fold(ArrayRef operands, SmallVectorImpl<::mlir::OpFoldResult> &results) { return foldMemRefCast(*this); } LogicalResult MemsetOp::fold(ArrayRef operands, SmallVectorImpl<::mlir::OpFoldResult> &results) { return foldMemRefCast(*this); } //===----------------------------------------------------------------------===// // GPU_WaitOp //===----------------------------------------------------------------------===// namespace { /// Remove gpu.wait op use of gpu.wait op def without async dependencies. /// %t = gpu.wait async [] // No async dependencies. /// ... gpu.wait ... [%t, ...] // %t can be removed. struct EraseRedundantGpuWaitOpPairs : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(WaitOp op, PatternRewriter &rewriter) const final { auto predicate = [](Value value) { auto waitOp = value.getDefiningOp(); return waitOp && waitOp->getNumOperands() == 0; }; if (llvm::none_of(op.asyncDependencies(), predicate)) return failure(); SmallVector validOperands; for (Value operand : op->getOperands()) { if (predicate(operand)) continue; validOperands.push_back(operand); } op->setOperands(validOperands); return success(); } }; /// Simplify trivial gpu.wait ops for the following patterns. /// 1. %t = gpu.wait async ... ops, where %t has no uses (regardless of async /// dependencies). /// 2. %t1 = gpu.wait async [%t0], in this case, we can replace uses of %t1 with /// %t0. /// 3. gpu.wait [] ops, i.e gpu.wait ops that neither have any async /// dependencies nor return any token. struct SimplifyGpuWaitOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(WaitOp op, PatternRewriter &rewriter) const final { // Erase gpu.wait ops that neither have any async dependencies nor return // any async token. if (op.asyncDependencies().empty() && !op.asyncToken()) { rewriter.eraseOp(op); return success(); } // Replace uses of %t1 = gpu.wait async [%t0] ops with %t0 and erase the op. if (llvm::hasSingleElement(op.asyncDependencies()) && op.asyncToken()) { rewriter.replaceOp(op, op.asyncDependencies()); return success(); } // Erase %t = gpu.wait async ... ops, where %t has no uses. if (op.asyncToken() && op.asyncToken().use_empty()) { rewriter.eraseOp(op); return success(); } return failure(); } }; } // end anonymous namespace void WaitOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // GPU_AllocOp //===----------------------------------------------------------------------===// LogicalResult AllocOp::verify() { auto memRefType = memref().getType().cast(); if (static_cast(dynamicSizes().size()) != memRefType.getNumDynamicDims()) return emitOpError("dimension operand count does not equal memref " "dynamic dimension count"); unsigned numSymbols = 0; if (!memRefType.getLayout().isIdentity()) numSymbols = memRefType.getLayout().getAffineMap().getNumSymbols(); if (symbolOperands().size() != numSymbols) { return emitOpError( "symbol operand count does not equal memref symbol count"); } return success(); } namespace { /// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to /// `memref::AllocOp`. struct SimplifyDimOfAllocOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(memref::DimOp dimOp, PatternRewriter &rewriter) const override { auto index = dimOp.getIndex().getDefiningOp(); if (!index) return failure(); auto memrefType = dimOp.getSource().getType().dyn_cast(); if (!memrefType || !memrefType.isDynamicDim(index.value())) return failure(); auto alloc = dimOp.getSource().getDefiningOp(); if (!alloc) return failure(); Value substituteOp = *(alloc.dynamicSizes().begin() + memrefType.getDynamicDimIndex(index.value())); rewriter.replaceOp(dimOp, substituteOp); return success(); } }; } // namespace void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } #include "mlir/Dialect/GPU/IR/GPUOpInterfaces.cpp.inc" #include "mlir/Dialect/GPU/IR/GPUOpsEnums.cpp.inc" #define GET_ATTRDEF_CLASSES #include "mlir/Dialect/GPU/IR/GPUOpsAttributes.cpp.inc" #define GET_OP_CLASSES #include "mlir/Dialect/GPU/IR/GPUOps.cpp.inc"