//===- Utils.cpp - General utilities for Presburger library ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Utility functions required by the Presburger Library. // //===----------------------------------------------------------------------===// #include "mlir/Analysis/Presburger/Utils.h" #include "mlir/Analysis/Presburger/IntegerRelation.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Support/MathExtras.h" using namespace mlir; using namespace presburger; /// Normalize a division's `dividend` and the `divisor` by their GCD. For /// example: if the dividend and divisor are [2,0,4] and 4 respectively, /// they get normalized to [1,0,2] and 2. static void normalizeDivisionByGCD(SmallVectorImpl ÷nd, unsigned &divisor) { if (divisor == 0 || dividend.empty()) return; // We take the absolute value of dividend's coefficients to make sure that // `gcd` is positive. int64_t gcd = llvm::greatestCommonDivisor(std::abs(dividend.front()), int64_t(divisor)); // The reason for ignoring the constant term is as follows. // For a division: // floor((a + m.f(x))/(m.d)) // It can be replaced by: // floor((floor(a/m) + f(x))/d) // Since `{a/m}/d` in the dividend satisfies 0 <= {a/m}/d < 1/d, it will not // influence the result of the floor division and thus, can be ignored. for (size_t i = 1, m = dividend.size() - 1; i < m; i++) { gcd = llvm::greatestCommonDivisor(std::abs(dividend[i]), gcd); if (gcd == 1) return; } // Normalize the dividend and the denominator. std::transform(dividend.begin(), dividend.end(), dividend.begin(), [gcd](int64_t &n) { return floorDiv(n, gcd); }); divisor /= gcd; } /// Check if the pos^th identifier can be represented as a division using upper /// bound inequality at position `ubIneq` and lower bound inequality at position /// `lbIneq`. /// /// Let `id` be the pos^th identifier, then `id` is equivalent to /// `expr floordiv divisor` if there are constraints of the form: /// 0 <= expr - divisor * id <= divisor - 1 /// Rearranging, we have: /// divisor * id - expr + (divisor - 1) >= 0 <-- Lower bound for 'id' /// -divisor * id + expr >= 0 <-- Upper bound for 'id' /// /// For example: /// 32*k >= 16*i + j - 31 <-- Lower bound for 'k' /// 32*k <= 16*i + j <-- Upper bound for 'k' /// expr = 16*i + j, divisor = 32 /// k = ( 16*i + j ) floordiv 32 /// /// 4q >= i + j - 2 <-- Lower bound for 'q' /// 4q <= i + j + 1 <-- Upper bound for 'q' /// expr = i + j + 1, divisor = 4 /// q = (i + j + 1) floordiv 4 // /// This function also supports detecting divisions from bounds that are /// strictly tighter than the division bounds described above, since tighter /// bounds imply the division bounds. For example: /// 4q - i - j + 2 >= 0 <-- Lower bound for 'q' /// -4q + i + j >= 0 <-- Tight upper bound for 'q' /// /// To extract floor divisions with tighter bounds, we assume that that the /// constraints are of the form: /// c <= expr - divisior * id <= divisor - 1, where 0 <= c <= divisor - 1 /// Rearranging, we have: /// divisor * id - expr + (divisor - 1) >= 0 <-- Lower bound for 'id' /// -divisor * id + expr - c >= 0 <-- Upper bound for 'id' /// /// If successful, `expr` is set to dividend of the division and `divisor` is /// set to the denominator of the division. The final division expression is /// normalized by GCD. static LogicalResult getDivRepr(const IntegerRelation &cst, unsigned pos, unsigned ubIneq, unsigned lbIneq, SmallVector &expr, unsigned &divisor) { assert(pos <= cst.getNumIds() && "Invalid identifier position"); assert(ubIneq <= cst.getNumInequalities() && "Invalid upper bound inequality position"); assert(lbIneq <= cst.getNumInequalities() && "Invalid upper bound inequality position"); // Extract divisor from the lower bound. divisor = cst.atIneq(lbIneq, pos); // First, check if the constraints are opposite of each other except the // constant term. unsigned i = 0, e = 0; for (i = 0, e = cst.getNumIds(); i < e; ++i) if (cst.atIneq(ubIneq, i) != -cst.atIneq(lbIneq, i)) break; if (i < e) return failure(); // Then, check if the constant term is of the proper form. // Due to the form of the upper/lower bound inequalities, the sum of their // constants is `divisor - 1 - c`. From this, we can extract c: int64_t constantSum = cst.atIneq(lbIneq, cst.getNumCols() - 1) + cst.atIneq(ubIneq, cst.getNumCols() - 1); int64_t c = divisor - 1 - constantSum; // Check if `c` satisfies the condition `0 <= c <= divisor - 1`. This also // implictly checks that `divisor` is positive. if (!(c >= 0 && c <= divisor - 1)) return failure(); // The inequality pair can be used to extract the division. // Set `expr` to the dividend of the division except the constant term, which // is set below. expr.resize(cst.getNumCols(), 0); for (i = 0, e = cst.getNumIds(); i < e; ++i) if (i != pos) expr[i] = cst.atIneq(ubIneq, i); // From the upper bound inequality's form, its constant term is equal to the // constant term of `expr`, minus `c`. From this, // constant term of `expr` = constant term of upper bound + `c`. expr.back() = cst.atIneq(ubIneq, cst.getNumCols() - 1) + c; normalizeDivisionByGCD(expr, divisor); return success(); } /// Check if the pos^th identifier can be represented as a division using /// equality at position `eqInd`. /// /// For example: /// 32*k == 16*i + j - 31 <-- `eqInd` for 'k' /// expr = 16*i + j - 31, divisor = 32 /// k = (16*i + j - 31) floordiv 32 /// /// If successful, `expr` is set to dividend of the division and `divisor` is /// set to the denominator of the division. The final division expression is /// normalized by GCD. static LogicalResult getDivRepr(const IntegerRelation &cst, unsigned pos, unsigned eqInd, SmallVector &expr, unsigned &divisor) { assert(pos <= cst.getNumIds() && "Invalid identifier position"); assert(eqInd <= cst.getNumEqualities() && "Invalid equality position"); // Extract divisor, the divisor can be negative and hence its sign information // is stored in `signDiv` to reverse the sign of dividend's coefficients. // Equality must involve the pos-th variable and hence `tempDiv` != 0. int64_t tempDiv = cst.atEq(eqInd, pos); if (tempDiv == 0) return failure(); int64_t signDiv = tempDiv < 0 ? -1 : 1; // The divisor is always a positive integer. divisor = tempDiv * signDiv; expr.resize(cst.getNumCols(), 0); for (unsigned i = 0, e = cst.getNumIds(); i < e; ++i) if (i != pos) expr[i] = signDiv * cst.atEq(eqInd, i); expr.back() = signDiv * cst.atEq(eqInd, cst.getNumCols() - 1); normalizeDivisionByGCD(expr, divisor); return success(); } // Returns `false` if the constraints depends on a variable for which an // explicit representation has not been found yet, otherwise returns `true`. static bool checkExplicitRepresentation(const IntegerRelation &cst, ArrayRef foundRepr, ArrayRef dividend, unsigned pos) { // Exit to avoid circular dependencies between divisions. for (unsigned c = 0, e = cst.getNumIds(); c < e; ++c) { if (c == pos) continue; if (!foundRepr[c] && dividend[c] != 0) { // Expression can't be constructed as it depends on a yet unknown // identifier. // // TODO: Visit/compute the identifiers in an order so that this doesn't // happen. More complex but much more efficient. return false; } } return true; } /// Check if the pos^th identifier can be expressed as a floordiv of an affine /// function of other identifiers (where the divisor is a positive constant). /// `foundRepr` contains a boolean for each identifier indicating if the /// explicit representation for that identifier has already been computed. /// Returns the `MaybeLocalRepr` struct which contains the indices of the /// constraints that can be expressed as a floordiv of an affine function. If /// the representation could be computed, `dividend` and `denominator` are set. /// If the representation could not be computed, the kind attribute in /// `MaybeLocalRepr` is set to None. MaybeLocalRepr presburger::computeSingleVarRepr( const IntegerRelation &cst, ArrayRef foundRepr, unsigned pos, SmallVector ÷nd, unsigned &divisor) { assert(pos < cst.getNumIds() && "invalid position"); assert(foundRepr.size() == cst.getNumIds() && "Size of foundRepr does not match total number of variables"); SmallVector lbIndices, ubIndices, eqIndices; cst.getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices, &eqIndices); MaybeLocalRepr repr{}; for (unsigned ubPos : ubIndices) { for (unsigned lbPos : lbIndices) { // Attempt to get divison representation from ubPos, lbPos. if (failed(getDivRepr(cst, pos, ubPos, lbPos, dividend, divisor))) continue; if (!checkExplicitRepresentation(cst, foundRepr, dividend, pos)) continue; repr.kind = ReprKind::Inequality; repr.repr.inequalityPair = {ubPos, lbPos}; return repr; } } for (unsigned eqPos : eqIndices) { // Attempt to get divison representation from eqPos. if (failed(getDivRepr(cst, pos, eqPos, dividend, divisor))) continue; if (!checkExplicitRepresentation(cst, foundRepr, dividend, pos)) continue; repr.kind = ReprKind::Equality; repr.repr.equalityIdx = eqPos; return repr; } return repr; } void presburger::removeDuplicateDivs( std::vector> &divs, SmallVectorImpl &denoms, unsigned localOffset, llvm::function_ref merge) { // Find and merge duplicate divisions. // TODO: Add division normalization to support divisions that differ by // a constant. // TODO: Add division ordering such that a division representation for local // identifier at position `i` only depends on local identifiers at position < // `i`. This would make sure that all divisions depending on other local // variables that can be merged, are merged. for (unsigned i = 0; i < divs.size(); ++i) { // Check if a division representation exists for the `i^th` local id. if (denoms[i] == 0) continue; // Check if a division exists which is a duplicate of the division at `i`. for (unsigned j = i + 1; j < divs.size(); ++j) { // Check if a division representation exists for the `j^th` local id. if (denoms[j] == 0) continue; // Check if the denominators match. if (denoms[i] != denoms[j]) continue; // Check if the representations are equal. if (divs[i] != divs[j]) continue; // Merge divisions at position `j` into division at position `i`. If // merge fails, do not merge these divs. bool mergeResult = merge(i, j); if (!mergeResult) continue; // Update division information to reflect merging. for (unsigned k = 0, g = divs.size(); k < g; ++k) { SmallVector &div = divs[k]; if (denoms[k] != 0) { div[localOffset + i] += div[localOffset + j]; div.erase(div.begin() + localOffset + j); } } divs.erase(divs.begin() + j); denoms.erase(denoms.begin() + j); // Since `j` can never be zero, we do not need to worry about overflows. --j; } } } void presburger::mergeLocalIds( IntegerRelation &relA, IntegerRelation &relB, llvm::function_ref merge) { assert(relA.getSpace().isCompatible(relB.getSpace()) && "Spaces should be compatible."); // Merge local ids of relA and relB without using division information, // i.e. append local ids of `relB` to `relA` and insert local ids of `relA` // to `relB` at start of its local ids. unsigned initLocals = relA.getNumLocalIds(); relA.insertId(IdKind::Local, relA.getNumLocalIds(), relB.getNumLocalIds()); relB.insertId(IdKind::Local, 0, initLocals); // Get division representations from each rel. std::vector> divsA, divsB; SmallVector denomsA, denomsB; relA.getLocalReprs(divsA, denomsA); relB.getLocalReprs(divsB, denomsB); // Copy division information for relB into `divsA` and `denomsA`, so that // these have the combined division information of both rels. Since newly // added local variables in relA and relB have no constraints, they will not // have any division representation. std::copy(divsB.begin() + initLocals, divsB.end(), divsA.begin() + initLocals); std::copy(denomsB.begin() + initLocals, denomsB.end(), denomsA.begin() + initLocals); // Merge all divisions by removing duplicate divisions. unsigned localOffset = relA.getIdKindOffset(IdKind::Local); presburger::removeDuplicateDivs(divsA, denomsA, localOffset, merge); } int64_t presburger::gcdRange(ArrayRef range) { int64_t gcd = 0; for (int64_t elem : range) { gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(elem)); if (gcd == 1) return gcd; } return gcd; } int64_t presburger::normalizeRange(MutableArrayRef range) { int64_t gcd = gcdRange(range); if (gcd == 0 || gcd == 1) return gcd; for (int64_t &elem : range) elem /= gcd; return gcd; } void presburger::normalizeDiv(MutableArrayRef num, int64_t &denom) { assert(denom > 0 && "denom must be positive!"); int64_t gcd = llvm::greatestCommonDivisor(gcdRange(num), denom); for (int64_t &coeff : num) coeff /= gcd; denom /= gcd; } SmallVector presburger::getNegatedCoeffs(ArrayRef coeffs) { SmallVector negatedCoeffs; negatedCoeffs.reserve(coeffs.size()); for (int64_t coeff : coeffs) negatedCoeffs.emplace_back(-coeff); return negatedCoeffs; } SmallVector presburger::getComplementIneq(ArrayRef ineq) { SmallVector coeffs; coeffs.reserve(ineq.size()); for (int64_t coeff : ineq) coeffs.emplace_back(-coeff); --coeffs.back(); return coeffs; }