//===- PWMAFunction.cpp - MLIR PWMAFunction Class -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Analysis/Presburger/PWMAFunction.h" #include "mlir/Analysis/Presburger/Simplex.h" using namespace mlir; using namespace presburger; // Return the result of subtracting the two given vectors pointwise. // The vectors must be of the same size. // e.g., [3, 4, 6] - [2, 5, 1] = [1, -1, 5]. static SmallVector subtract(ArrayRef vecA, ArrayRef vecB) { assert(vecA.size() == vecB.size() && "Cannot subtract vectors of differing lengths!"); SmallVector result; result.reserve(vecA.size()); for (unsigned i = 0, e = vecA.size(); i < e; ++i) result.push_back(vecA[i] - vecB[i]); return result; } PresburgerSet PWMAFunction::getDomain() const { PresburgerSet domain = PresburgerSet::getEmpty(getSpace()); for (const MultiAffineFunction &piece : pieces) domain.unionInPlace(piece.getDomain()); return domain; } Optional> MultiAffineFunction::valueAt(ArrayRef point) const { assert(point.size() == domainSet.getNumDimAndSymbolIds() && "Point has incorrect dimensionality!"); Optional> maybeLocalValues = getDomain().containsPointNoLocal(point); if (!maybeLocalValues) return {}; // The point lies in the domain, so we need to compute the output value. SmallVector pointHomogenous{llvm::to_vector(point)}; // The given point didn't include the values of locals which the output is a // function of; we have computed one possible set of values and use them // here. The function is not allowed to have local ids that take more than // one possible value. pointHomogenous.append(*maybeLocalValues); // The matrix `output` has an affine expression in the ith row, corresponding // to the expression for the ith value in the output vector. The last column // of the matrix contains the constant term. Let v be the input point with // a 1 appended at the end. We can see that output * v gives the desired // output vector. pointHomogenous.emplace_back(1); SmallVector result = output.postMultiplyWithColumn(pointHomogenous); assert(result.size() == getNumOutputs()); return result; } Optional> PWMAFunction::valueAt(ArrayRef point) const { assert(point.size() == getNumInputs() && "Point has incorrect dimensionality!"); for (const MultiAffineFunction &piece : pieces) if (Optional> output = piece.valueAt(point)) return output; return {}; } void MultiAffineFunction::print(raw_ostream &os) const { os << "Domain:"; domainSet.print(os); os << "Output:\n"; output.print(os); os << "\n"; } void MultiAffineFunction::dump() const { print(llvm::errs()); } bool MultiAffineFunction::isEqual(const MultiAffineFunction &other) const { return getDomainSpace().isCompatible(other.getDomainSpace()) && getDomain().isEqual(other.getDomain()) && isEqualWhereDomainsOverlap(other); } unsigned MultiAffineFunction::insertId(IdKind kind, unsigned pos, unsigned num) { assert(kind != IdKind::Domain && "Domain has to be zero in a set"); unsigned absolutePos = domainSet.getIdKindOffset(kind) + pos; output.insertColumns(absolutePos, num); return domainSet.insertId(kind, pos, num); } void MultiAffineFunction::removeIdRange(IdKind kind, unsigned idStart, unsigned idLimit) { output.removeColumns(idStart + domainSet.getIdKindOffset(kind), idLimit - idStart); domainSet.removeIdRange(kind, idStart, idLimit); } void MultiAffineFunction::truncateOutput(unsigned count) { assert(count <= output.getNumRows()); output.resizeVertically(count); } void PWMAFunction::truncateOutput(unsigned count) { assert(count <= numOutputs); for (MultiAffineFunction &piece : pieces) piece.truncateOutput(count); numOutputs = count; } void MultiAffineFunction::mergeLocalIds(MultiAffineFunction &other) { // Merge output local ids of both functions without using division // information i.e. append local ids of `other` to `this` and insert // local ids of `this` to `other` at the start of it's local ids. output.insertColumns(domainSet.getIdKindEnd(IdKind::Local), other.domainSet.getNumLocalIds()); other.output.insertColumns(other.domainSet.getIdKindOffset(IdKind::Local), domainSet.getNumLocalIds()); auto merge = [this, &other](unsigned i, unsigned j) -> bool { // Merge local at position j into local at position i in function domain. domainSet.eliminateRedundantLocalId(i, j); other.domainSet.eliminateRedundantLocalId(i, j); unsigned localOffset = domainSet.getIdKindOffset(IdKind::Local); // Merge local at position j into local at position i in output domain. output.addToColumn(localOffset + j, localOffset + i, 1); output.removeColumn(localOffset + j); other.output.addToColumn(localOffset + j, localOffset + i, 1); other.output.removeColumn(localOffset + j); return true; }; presburger::mergeLocalIds(domainSet, other.domainSet, merge); } bool MultiAffineFunction::isEqualWhereDomainsOverlap( MultiAffineFunction other) const { if (!getDomainSpace().isCompatible(other.getDomainSpace())) return false; // `commonFunc` has the same output as `this`. MultiAffineFunction commonFunc = *this; // After this merge, `commonFunc` and `other` have the same local ids; they // are merged. commonFunc.mergeLocalIds(other); // After this, the domain of `commonFunc` will be the intersection of the // domains of `this` and `other`. commonFunc.domainSet.append(other.domainSet); // `commonDomainMatching` contains the subset of the common domain // where the outputs of `this` and `other` match. // // We want to add constraints equating the outputs of `this` and `other`. // However, `this` may have difference local ids from `other`, whereas we // need both to have the same locals. Accordingly, we use `commonFunc.output` // in place of `this->output`, since `commonFunc` has the same output but also // has its locals merged. IntegerPolyhedron commonDomainMatching = commonFunc.getDomain(); for (unsigned row = 0, e = getNumOutputs(); row < e; ++row) commonDomainMatching.addEquality( subtract(commonFunc.output.getRow(row), other.output.getRow(row))); // If the whole common domain is a subset of commonDomainMatching, then they // are equal and the two functions match on the whole common domain. return commonFunc.getDomain().isSubsetOf(commonDomainMatching); } /// Two PWMAFunctions are equal if they have the same dimensionalities, /// the same domain, and take the same value at every point in the domain. bool PWMAFunction::isEqual(const PWMAFunction &other) const { if (!space.isCompatible(other.space)) return false; if (!this->getDomain().isEqual(other.getDomain())) return false; // Check if, whenever the domains of a piece of `this` and a piece of `other` // overlap, they take the same output value. If `this` and `other` have the // same domain (checked above), then this check passes iff the two functions // have the same output at every point in the domain. for (const MultiAffineFunction &aPiece : this->pieces) for (const MultiAffineFunction &bPiece : other.pieces) if (!aPiece.isEqualWhereDomainsOverlap(bPiece)) return false; return true; } void PWMAFunction::addPiece(const MultiAffineFunction &piece) { assert(space.isCompatible(piece.getDomainSpace()) && "Piece to be added is not compatible with this PWMAFunction!"); assert(piece.isConsistent() && "Piece is internally inconsistent!"); assert(this->getDomain() .intersect(PresburgerSet(piece.getDomain())) .isIntegerEmpty() && "New piece's domain overlaps with that of existing pieces!"); pieces.push_back(piece); } void PWMAFunction::addPiece(const IntegerPolyhedron &domain, const Matrix &output) { addPiece(MultiAffineFunction(domain, output)); } void PWMAFunction::print(raw_ostream &os) const { os << pieces.size() << " pieces:\n"; for (const MultiAffineFunction &piece : pieces) piece.print(os); } void PWMAFunction::dump() const { print(llvm::errs()); }