//===------- VectorCombine.cpp - Optimize partial vector operations -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass optimizes scalar/vector interactions using target cost models. The // transforms implemented here may not fit in traditional loop-based or SLP // vectorization passes. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Vectorize/VectorCombine.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Transforms/Vectorize.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "vector-combine" STATISTIC(NumVecCmp, "Number of vector compares formed"); static bool foldExtractCmp(Instruction &I, const TargetTransformInfo &TTI) { // Match a cmp with extracted vector operands. CmpInst::Predicate Pred; Instruction *Ext0, *Ext1; if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1)))) return false; Value *V0, *V1; ConstantInt *C; if (!match(Ext0, m_ExtractElement(m_Value(V0), m_ConstantInt(C))) || !match(Ext1, m_ExtractElement(m_Value(V1), m_Specific(C))) || V0->getType() != V1->getType()) return false; Type *ScalarTy = Ext0->getType(); Type *VecTy = V0->getType(); bool IsFP = ScalarTy->isFloatingPointTy(); unsigned CmpOpcode = IsFP ? Instruction::FCmp : Instruction::ICmp; // Check if the existing scalar code or the vector alternative is cheaper. // Extra uses of the extracts mean that we include those costs in the // vector total because those instructions will not be eliminated. // ((2 * extract) + scalar cmp) < (vector cmp + extract) ? int ExtractCost = TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, C->getZExtValue()); int ScalarCmpCost = TTI.getOperationCost(CmpOpcode, ScalarTy); int VecCmpCost = TTI.getOperationCost(CmpOpcode, VecTy); int ScalarCost = 2 * ExtractCost + ScalarCmpCost; int VecCost = VecCmpCost + ExtractCost + !Ext0->hasOneUse() * ExtractCost + !Ext1->hasOneUse() * ExtractCost; if (ScalarCost < VecCost) return false; // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C ++NumVecCmp; IRBuilder<> Builder(&I); Value *VecCmp = IsFP ? Builder.CreateFCmp(Pred, V0, V1) : Builder.CreateICmp(Pred, V0, V1); Value *Ext = Builder.CreateExtractElement(VecCmp, C); I.replaceAllUsesWith(Ext); return true; } /// This is the entry point for all transforms. Pass manager differences are /// handled in the callers of this function. static bool runImpl(Function &F, const TargetTransformInfo &TTI, const DominatorTree &DT) { bool MadeChange = false; for (BasicBlock &BB : F) { // Ignore unreachable basic blocks. if (!DT.isReachableFromEntry(&BB)) continue; // Do not delete instructions under here and invalidate the iterator. // Walk the block backwards for efficiency. We're matching a chain of // use->defs, so we're more likely to succeed by starting from the bottom. // TODO: It could be more efficient to remove dead instructions // iteratively in this loop rather than waiting until the end. for (Instruction &I : make_range(BB.rbegin(), BB.rend())) { MadeChange |= foldExtractCmp(I, TTI); // TODO: More transforms go here. } } // We're done with transforms, so remove dead instructions. if (MadeChange) for (BasicBlock &BB : F) SimplifyInstructionsInBlock(&BB); return MadeChange; } // Pass manager boilerplate below here. namespace { class VectorCombineLegacyPass : public FunctionPass { public: static char ID; VectorCombineLegacyPass() : FunctionPass(ID) { initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.setPreservesCFG(); AU.addPreserved(); AU.addPreserved(); FunctionPass::getAnalysisUsage(AU); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto &TTI = getAnalysis().getTTI(F); auto &DT = getAnalysis().getDomTree(); return runImpl(F, TTI, DT); } }; } // namespace char VectorCombineLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine", "Optimize scalar/vector ops", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine", "Optimize scalar/vector ops", false, false) Pass *llvm::createVectorCombinePass() { return new VectorCombineLegacyPass(); } PreservedAnalyses VectorCombinePass::run(Function &F, FunctionAnalysisManager &FAM) { TargetTransformInfo &TTI = FAM.getResult(F); DominatorTree &DT = FAM.getResult(F); if (!runImpl(F, TTI, DT)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); return PA; }