//===-- ProcessMachCore.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include #include #include "llvm/Support/MathExtras.h" #include "llvm/Support/Threading.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Section.h" #include "lldb/Host/Host.h" #include "lldb/Symbol/LocateSymbolFile.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/MemoryRegionInfo.h" #include "lldb/Target/SectionLoadList.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Utility/DataBuffer.h" #include "lldb/Utility/LLDBLog.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/State.h" #include "ProcessMachCore.h" #include "Plugins/Process/Utility/StopInfoMachException.h" #include "ThreadMachCore.h" // Needed for the plug-in names for the dynamic loaders. #include "lldb/Host/SafeMachO.h" #include "Plugins/DynamicLoader/Darwin-Kernel/DynamicLoaderDarwinKernel.h" #include "Plugins/DynamicLoader/MacOSX-DYLD/DynamicLoaderMacOSXDYLD.h" #include "Plugins/DynamicLoader/Static/DynamicLoaderStatic.h" #include "Plugins/ObjectFile/Mach-O/ObjectFileMachO.h" #include #include using namespace lldb; using namespace lldb_private; LLDB_PLUGIN_DEFINE(ProcessMachCore) llvm::StringRef ProcessMachCore::GetPluginDescriptionStatic() { return "Mach-O core file debugging plug-in."; } void ProcessMachCore::Terminate() { PluginManager::UnregisterPlugin(ProcessMachCore::CreateInstance); } lldb::ProcessSP ProcessMachCore::CreateInstance(lldb::TargetSP target_sp, ListenerSP listener_sp, const FileSpec *crash_file, bool can_connect) { lldb::ProcessSP process_sp; if (crash_file && !can_connect) { const size_t header_size = sizeof(llvm::MachO::mach_header); auto data_sp = FileSystem::Instance().CreateDataBuffer( crash_file->GetPath(), header_size, 0); if (data_sp && data_sp->GetByteSize() == header_size) { DataExtractor data(data_sp, lldb::eByteOrderLittle, 4); lldb::offset_t data_offset = 0; llvm::MachO::mach_header mach_header; if (ObjectFileMachO::ParseHeader(data, &data_offset, mach_header)) { if (mach_header.filetype == llvm::MachO::MH_CORE) process_sp = std::make_shared(target_sp, listener_sp, *crash_file); } } } return process_sp; } bool ProcessMachCore::CanDebug(lldb::TargetSP target_sp, bool plugin_specified_by_name) { if (plugin_specified_by_name) return true; // For now we are just making sure the file exists for a given module if (!m_core_module_sp && FileSystem::Instance().Exists(m_core_file)) { // Don't add the Target's architecture to the ModuleSpec - we may be // working with a core file that doesn't have the correct cpusubtype in the // header but we should still try to use it - // ModuleSpecList::FindMatchingModuleSpec enforces a strict arch mach. ModuleSpec core_module_spec(m_core_file); Status error(ModuleList::GetSharedModule(core_module_spec, m_core_module_sp, nullptr, nullptr, nullptr)); if (m_core_module_sp) { ObjectFile *core_objfile = m_core_module_sp->GetObjectFile(); if (core_objfile && core_objfile->GetType() == ObjectFile::eTypeCoreFile) return true; } } return false; } // ProcessMachCore constructor ProcessMachCore::ProcessMachCore(lldb::TargetSP target_sp, ListenerSP listener_sp, const FileSpec &core_file) : PostMortemProcess(target_sp, listener_sp), m_core_aranges(), m_core_range_infos(), m_core_module_sp(), m_core_file(core_file), m_dyld_addr(LLDB_INVALID_ADDRESS), m_mach_kernel_addr(LLDB_INVALID_ADDRESS) {} // Destructor ProcessMachCore::~ProcessMachCore() { Clear(); // We need to call finalize on the process before destroying ourselves to // make sure all of the broadcaster cleanup goes as planned. If we destruct // this class, then Process::~Process() might have problems trying to fully // destroy the broadcaster. Finalize(); } bool ProcessMachCore::GetDynamicLoaderAddress(lldb::addr_t addr) { Log *log(GetLog(LLDBLog::DynamicLoader | LLDBLog::Process)); llvm::MachO::mach_header header; Status error; if (DoReadMemory(addr, &header, sizeof(header), error) != sizeof(header)) return false; if (header.magic == llvm::MachO::MH_CIGAM || header.magic == llvm::MachO::MH_CIGAM_64) { header.magic = llvm::ByteSwap_32(header.magic); header.cputype = llvm::ByteSwap_32(header.cputype); header.cpusubtype = llvm::ByteSwap_32(header.cpusubtype); header.filetype = llvm::ByteSwap_32(header.filetype); header.ncmds = llvm::ByteSwap_32(header.ncmds); header.sizeofcmds = llvm::ByteSwap_32(header.sizeofcmds); header.flags = llvm::ByteSwap_32(header.flags); } // TODO: swap header if needed... // printf("0x%16.16" PRIx64 ": magic = 0x%8.8x, file_type= %u\n", vaddr, // header.magic, header.filetype); if (header.magic == llvm::MachO::MH_MAGIC || header.magic == llvm::MachO::MH_MAGIC_64) { // Check MH_EXECUTABLE to see if we can find the mach image that contains // the shared library list. The dynamic loader (dyld) is what contains the // list for user applications, and the mach kernel contains a global that // has the list of kexts to load switch (header.filetype) { case llvm::MachO::MH_DYLINKER: // printf("0x%16.16" PRIx64 ": file_type = MH_DYLINKER\n", vaddr); // Address of dyld "struct mach_header" in the core file LLDB_LOGF(log, "ProcessMachCore::GetDynamicLoaderAddress found a user " "process dyld binary image at 0x%" PRIx64, addr); m_dyld_addr = addr; return true; case llvm::MachO::MH_EXECUTE: // printf("0x%16.16" PRIx64 ": file_type = MH_EXECUTE\n", vaddr); // Check MH_EXECUTABLE file types to see if the dynamic link object flag // is NOT set. If it isn't, then we have a mach_kernel. if ((header.flags & llvm::MachO::MH_DYLDLINK) == 0) { LLDB_LOGF(log, "ProcessMachCore::GetDynamicLoaderAddress found a mach " "kernel binary image at 0x%" PRIx64, addr); // Address of the mach kernel "struct mach_header" in the core file. m_mach_kernel_addr = addr; return true; } break; } } return false; } // We have a hint about a binary -- a UUID, possibly a load address. // Try to load a file with that UUID into lldb, and if we have a load // address, set it correctly. Else assume that the binary was loaded // with no slide. static bool load_standalone_binary(UUID uuid, addr_t value, bool value_is_offset, Target &target) { if (uuid.IsValid()) { ModuleSpec module_spec; module_spec.GetUUID() = uuid; // Look up UUID in global module cache before attempting // dsymForUUID-like action. ModuleSP module_sp; Status error = ModuleList::GetSharedModule(module_spec, module_sp, nullptr, nullptr, nullptr); if (!module_sp.get()) { // Force a a dsymForUUID lookup, if that tool is available. if (!module_spec.GetSymbolFileSpec()) { Status error; Symbols::DownloadObjectAndSymbolFile(module_spec, error, true); } if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) { module_sp = std::make_shared(module_spec); } } // If we couldn't find the binary anywhere else, as a last resort, // read it out of memory in the corefile. if (!module_sp.get() && value != LLDB_INVALID_ADDRESS && !value_is_offset) { char namebuf[80]; snprintf(namebuf, sizeof(namebuf), "mem-image-0x%" PRIx64, value); module_sp = target.GetProcessSP()->ReadModuleFromMemory(FileSpec(namebuf), value); } if (module_sp.get()) { target.SetArchitecture(module_sp->GetObjectFile()->GetArchitecture()); target.GetImages().AppendIfNeeded(module_sp, false); // TODO: Instead of using the load address as a value, if we create a // memory module from that address, we could get the correct segment // offset values from the in-memory load commands and set them correctly. // In case the load address we were given is not correct for all segments, // e.g. something in the shared cache. DynamicLoaderDarwinKernel does // something similar for kexts. In the context of a corefile, this would // be an inexpensive operation. Not all binaries in a corefile will have // a Mach-O header/load commands in memory, so this will not work in all // cases. bool changed = false; if (module_sp->GetObjectFile()) { if (value != LLDB_INVALID_ADDRESS) { module_sp->SetLoadAddress(target, value, value_is_offset, changed); } else { // No address/offset/slide, load the binary at file address, // offset 0. const bool value_is_slide = true; module_sp->SetLoadAddress(target, 0, value_is_slide, changed); } } else { // In-memory image, load at its true address, offset 0. const bool value_is_slide = true; module_sp->SetLoadAddress(target, 0, value_is_slide, changed); } ModuleList added_module; added_module.Append(module_sp, false); target.ModulesDidLoad(added_module); // Flush info in the process (stack frames, etc). ProcessSP process_sp(target.GetProcessSP()); if (process_sp) process_sp->Flush(); return true; } } return false; } // Process Control Status ProcessMachCore::DoLoadCore() { Log *log(GetLog(LLDBLog::DynamicLoader | LLDBLog::Process)); Status error; if (!m_core_module_sp) { error.SetErrorString("invalid core module"); return error; } ObjectFile *core_objfile = m_core_module_sp->GetObjectFile(); if (core_objfile == nullptr) { error.SetErrorString("invalid core object file"); return error; } if (core_objfile->GetNumThreadContexts() == 0) { error.SetErrorString("core file doesn't contain any LC_THREAD load " "commands, or the LC_THREAD architecture is not " "supported in this lldb"); return error; } SectionList *section_list = core_objfile->GetSectionList(); if (section_list == nullptr) { error.SetErrorString("core file has no sections"); return error; } const uint32_t num_sections = section_list->GetNumSections(0); if (num_sections == 0) { error.SetErrorString("core file has no sections"); return error; } SetCanJIT(false); llvm::MachO::mach_header header; DataExtractor data(&header, sizeof(header), m_core_module_sp->GetArchitecture().GetByteOrder(), m_core_module_sp->GetArchitecture().GetAddressByteSize()); bool ranges_are_sorted = true; addr_t vm_addr = 0; for (uint32_t i = 0; i < num_sections; ++i) { Section *section = section_list->GetSectionAtIndex(i).get(); if (section && section->GetFileSize() > 0) { lldb::addr_t section_vm_addr = section->GetFileAddress(); FileRange file_range(section->GetFileOffset(), section->GetFileSize()); VMRangeToFileOffset::Entry range_entry( section_vm_addr, section->GetByteSize(), file_range); if (vm_addr > section_vm_addr) ranges_are_sorted = false; vm_addr = section->GetFileAddress(); VMRangeToFileOffset::Entry *last_entry = m_core_aranges.Back(); if (last_entry && last_entry->GetRangeEnd() == range_entry.GetRangeBase() && last_entry->data.GetRangeEnd() == range_entry.data.GetRangeBase()) { last_entry->SetRangeEnd(range_entry.GetRangeEnd()); last_entry->data.SetRangeEnd(range_entry.data.GetRangeEnd()); } else { m_core_aranges.Append(range_entry); } // Some core files don't fill in the permissions correctly. If that is // the case assume read + execute so clients don't think the memory is // not readable, or executable. The memory isn't writable since this // plug-in doesn't implement DoWriteMemory. uint32_t permissions = section->GetPermissions(); if (permissions == 0) permissions = lldb::ePermissionsReadable | lldb::ePermissionsExecutable; m_core_range_infos.Append(VMRangeToPermissions::Entry( section_vm_addr, section->GetByteSize(), permissions)); } } if (!ranges_are_sorted) { m_core_aranges.Sort(); m_core_range_infos.Sort(); } bool found_main_binary_definitively = false; addr_t objfile_binary_value; bool objfile_binary_value_is_offset; UUID objfile_binary_uuid; ObjectFile::BinaryType type; if (core_objfile->GetCorefileMainBinaryInfo(objfile_binary_value, objfile_binary_value_is_offset, objfile_binary_uuid, type)) { if (log) { log->Printf( "ProcessMachCore::DoLoadCore: using binary hint from 'main bin spec' " "LC_NOTE with UUID %s value 0x%" PRIx64 " value is offset %d and type %d", objfile_binary_uuid.GetAsString().c_str(), objfile_binary_value, objfile_binary_value_is_offset, type); } if (objfile_binary_value != LLDB_INVALID_ADDRESS && !objfile_binary_value_is_offset) { if (type == ObjectFile::eBinaryTypeUser) { load_standalone_binary(objfile_binary_uuid, objfile_binary_value, objfile_binary_value_is_offset, GetTarget()); m_dyld_addr = objfile_binary_value; m_dyld_plugin_name = DynamicLoaderMacOSXDYLD::GetPluginNameStatic(); found_main_binary_definitively = true; } if (type == ObjectFile::eBinaryTypeKernel) { m_mach_kernel_addr = objfile_binary_value; m_dyld_plugin_name = DynamicLoaderDarwinKernel::GetPluginNameStatic(); found_main_binary_definitively = true; } } if (!found_main_binary_definitively) { // ObjectFile::eBinaryTypeStandalone, undeclared types if (load_standalone_binary(objfile_binary_uuid, objfile_binary_value, objfile_binary_value_is_offset, GetTarget())) { found_main_binary_definitively = true; m_dyld_plugin_name = DynamicLoaderStatic::GetPluginNameStatic(); } } } // This checks for the presence of an LC_IDENT string in a core file; // LC_IDENT is very obsolete and should not be used in new code, but if the // load command is present, let's use the contents. UUID ident_uuid; addr_t ident_binary_addr = LLDB_INVALID_ADDRESS; if (!found_main_binary_definitively) { std::string corefile_identifier = core_objfile->GetIdentifierString(); // Search for UUID= and stext= strings in the identifier str. if (corefile_identifier.find("UUID=") != std::string::npos) { size_t p = corefile_identifier.find("UUID=") + strlen("UUID="); std::string uuid_str = corefile_identifier.substr(p, 36); ident_uuid.SetFromStringRef(uuid_str); if (log) log->Printf("Got a UUID from LC_IDENT/kern ver str LC_NOTE: %s", ident_uuid.GetAsString().c_str()); } if (corefile_identifier.find("stext=") != std::string::npos) { size_t p = corefile_identifier.find("stext=") + strlen("stext="); if (corefile_identifier[p] == '0' && corefile_identifier[p + 1] == 'x') { ident_binary_addr = ::strtoul(corefile_identifier.c_str() + p, nullptr, 16); if (log) log->Printf("Got a load address from LC_IDENT/kern ver str " "LC_NOTE: 0x%" PRIx64, ident_binary_addr); } } // Search for a "Darwin Kernel" str indicating kernel; else treat as // standalone if (corefile_identifier.find("Darwin Kernel") != std::string::npos && ident_uuid.IsValid() && ident_binary_addr != LLDB_INVALID_ADDRESS) { if (log) log->Printf("ProcessMachCore::DoLoadCore: Found kernel binary via " "LC_IDENT/kern ver str LC_NOTE"); m_mach_kernel_addr = ident_binary_addr; found_main_binary_definitively = true; } else if (ident_uuid.IsValid()) { // We have no address specified, only a UUID. Load it at the file // address. const bool value_is_offset = false; if (load_standalone_binary(ident_uuid, ident_binary_addr, value_is_offset, GetTarget())) { found_main_binary_definitively = true; m_dyld_plugin_name = DynamicLoaderStatic::GetPluginNameStatic(); } } } bool did_load_extra_binaries = core_objfile->LoadCoreFileImages(*this); // If we have a "all image infos" LC_NOTE, try to load all of the // binaries listed, and set their Section load addresses in the Target. if (found_main_binary_definitively == false && did_load_extra_binaries) { m_dyld_plugin_name = DynamicLoaderDarwinKernel::GetPluginNameStatic(); found_main_binary_definitively = true; } if (!found_main_binary_definitively && (m_dyld_addr == LLDB_INVALID_ADDRESS || m_mach_kernel_addr == LLDB_INVALID_ADDRESS)) { // We need to locate the main executable in the memory ranges we have in // the core file. We need to search for both a user-process dyld binary // and a kernel binary in memory; we must look at all the pages in the // binary so we don't miss one or the other. Step through all memory // segments searching for a kernel binary and for a user process dyld -- // we'll decide which to prefer later if both are present. const size_t num_core_aranges = m_core_aranges.GetSize(); for (size_t i = 0; i < num_core_aranges; ++i) { const VMRangeToFileOffset::Entry *entry = m_core_aranges.GetEntryAtIndex(i); lldb::addr_t section_vm_addr_start = entry->GetRangeBase(); lldb::addr_t section_vm_addr_end = entry->GetRangeEnd(); for (lldb::addr_t section_vm_addr = section_vm_addr_start; section_vm_addr < section_vm_addr_end; section_vm_addr += 0x1000) { GetDynamicLoaderAddress(section_vm_addr); } } } if (!found_main_binary_definitively && m_mach_kernel_addr != LLDB_INVALID_ADDRESS) { // In the case of multiple kernel images found in the core file via // exhaustive search, we may not pick the correct one. See if the // DynamicLoaderDarwinKernel's search heuristics might identify the correct // one. Most of the time, I expect the address from SearchForDarwinKernel() // will be the same as the address we found via exhaustive search. if (!GetTarget().GetArchitecture().IsValid() && m_core_module_sp.get()) { GetTarget().SetArchitecture(m_core_module_sp->GetArchitecture()); } // SearchForDarwinKernel will end up calling back into this this class in // the GetImageInfoAddress method which will give it the // m_mach_kernel_addr/m_dyld_addr it already has. Save that aside and set // m_mach_kernel_addr/m_dyld_addr to an invalid address temporarily so // DynamicLoaderDarwinKernel does a real search for the kernel using its // own heuristics. addr_t saved_mach_kernel_addr = m_mach_kernel_addr; addr_t saved_user_dyld_addr = m_dyld_addr; m_mach_kernel_addr = LLDB_INVALID_ADDRESS; m_dyld_addr = LLDB_INVALID_ADDRESS; addr_t better_kernel_address = DynamicLoaderDarwinKernel::SearchForDarwinKernel(this); m_mach_kernel_addr = saved_mach_kernel_addr; m_dyld_addr = saved_user_dyld_addr; if (better_kernel_address != LLDB_INVALID_ADDRESS) { LLDB_LOGF(log, "ProcessMachCore::DoLoadCore: Using the kernel address " "from DynamicLoaderDarwinKernel"); m_mach_kernel_addr = better_kernel_address; } } if (m_dyld_plugin_name.empty()) { // If we found both a user-process dyld and a kernel binary, we need to // decide which to prefer. if (GetCorefilePreference() == eKernelCorefile) { if (m_mach_kernel_addr != LLDB_INVALID_ADDRESS) { LLDB_LOGF(log, "ProcessMachCore::DoLoadCore: Using kernel corefile image " "at 0x%" PRIx64, m_mach_kernel_addr); m_dyld_plugin_name = DynamicLoaderDarwinKernel::GetPluginNameStatic(); } else if (m_dyld_addr != LLDB_INVALID_ADDRESS) { LLDB_LOGF(log, "ProcessMachCore::DoLoadCore: Using user process dyld " "image at 0x%" PRIx64, m_dyld_addr); m_dyld_plugin_name = DynamicLoaderMacOSXDYLD::GetPluginNameStatic(); } } else { if (m_dyld_addr != LLDB_INVALID_ADDRESS) { LLDB_LOGF(log, "ProcessMachCore::DoLoadCore: Using user process dyld " "image at 0x%" PRIx64, m_dyld_addr); m_dyld_plugin_name = DynamicLoaderMacOSXDYLD::GetPluginNameStatic(); } else if (m_mach_kernel_addr != LLDB_INVALID_ADDRESS) { LLDB_LOGF(log, "ProcessMachCore::DoLoadCore: Using kernel corefile image " "at 0x%" PRIx64, m_mach_kernel_addr); m_dyld_plugin_name = DynamicLoaderDarwinKernel::GetPluginNameStatic(); } } } if (m_dyld_plugin_name != DynamicLoaderMacOSXDYLD::GetPluginNameStatic()) { // For non-user process core files, the permissions on the core file // segments are usually meaningless, they may be just "read", because we're // dealing with kernel coredumps or early startup coredumps and the dumper // is grabbing pages of memory without knowing what they are. If they // aren't marked as "executable", that can break the unwinder which will // check a pc value to see if it is in an executable segment and stop the // backtrace early if it is not ("executable" and "unknown" would both be // fine, but "not executable" will break the unwinder). size_t core_range_infos_size = m_core_range_infos.GetSize(); for (size_t i = 0; i < core_range_infos_size; i++) { VMRangeToPermissions::Entry *ent = m_core_range_infos.GetMutableEntryAtIndex(i); ent->data = lldb::ePermissionsReadable | lldb::ePermissionsExecutable; } } // Even if the architecture is set in the target, we need to override it to // match the core file which is always single arch. ArchSpec arch(m_core_module_sp->GetArchitecture()); if (arch.GetCore() == ArchSpec::eCore_x86_32_i486) { arch = Platform::GetAugmentedArchSpec(GetTarget().GetPlatform().get(), "i386"); } if (arch.IsValid()) GetTarget().SetArchitecture(arch); addr_t address_mask = core_objfile->GetAddressMask(); if (address_mask != 0) { SetCodeAddressMask(address_mask); SetDataAddressMask(address_mask); } return error; } lldb_private::DynamicLoader *ProcessMachCore::GetDynamicLoader() { if (m_dyld_up.get() == nullptr) m_dyld_up.reset(DynamicLoader::FindPlugin(this, m_dyld_plugin_name)); return m_dyld_up.get(); } bool ProcessMachCore::DoUpdateThreadList(ThreadList &old_thread_list, ThreadList &new_thread_list) { if (old_thread_list.GetSize(false) == 0) { // Make up the thread the first time this is called so we can setup our one // and only core thread state. ObjectFile *core_objfile = m_core_module_sp->GetObjectFile(); if (core_objfile) { const uint32_t num_threads = core_objfile->GetNumThreadContexts(); for (lldb::tid_t tid = 0; tid < num_threads; ++tid) { ThreadSP thread_sp(new ThreadMachCore(*this, tid)); new_thread_list.AddThread(thread_sp); } } } else { const uint32_t num_threads = old_thread_list.GetSize(false); for (uint32_t i = 0; i < num_threads; ++i) new_thread_list.AddThread(old_thread_list.GetThreadAtIndex(i, false)); } return new_thread_list.GetSize(false) > 0; } void ProcessMachCore::RefreshStateAfterStop() { // Let all threads recover from stopping and do any clean up based on the // previous thread state (if any). m_thread_list.RefreshStateAfterStop(); // SetThreadStopInfo (m_last_stop_packet); } Status ProcessMachCore::DoDestroy() { return Status(); } // Process Queries bool ProcessMachCore::IsAlive() { return true; } bool ProcessMachCore::WarnBeforeDetach() const { return false; } // Process Memory size_t ProcessMachCore::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { // Don't allow the caching that lldb_private::Process::ReadMemory does since // in core files we have it all cached our our core file anyway. return DoReadMemory(addr, buf, size, error); } size_t ProcessMachCore::DoReadMemory(addr_t addr, void *buf, size_t size, Status &error) { ObjectFile *core_objfile = m_core_module_sp->GetObjectFile(); size_t bytes_read = 0; if (core_objfile) { // Segments are not always contiguous in mach-o core files. We have core // files that have segments like: // Address Size File off File size // ---------- ---------- ---------- ---------- // LC_SEGMENT 0x000f6000 0x00001000 0x1d509ee8 0x00001000 --- --- 0 // 0x00000000 __TEXT LC_SEGMENT 0x0f600000 0x00100000 0x1d50aee8 0x00100000 // --- --- 0 0x00000000 __TEXT LC_SEGMENT 0x000f7000 0x00001000 // 0x1d60aee8 0x00001000 --- --- 0 0x00000000 __TEXT // // Any if the user executes the following command: // // (lldb) mem read 0xf6ff0 // // We would attempt to read 32 bytes from 0xf6ff0 but would only get 16 // unless we loop through consecutive memory ranges that are contiguous in // the address space, but not in the file data. while (bytes_read < size) { const addr_t curr_addr = addr + bytes_read; const VMRangeToFileOffset::Entry *core_memory_entry = m_core_aranges.FindEntryThatContains(curr_addr); if (core_memory_entry) { const addr_t offset = curr_addr - core_memory_entry->GetRangeBase(); const addr_t bytes_left = core_memory_entry->GetRangeEnd() - curr_addr; const size_t bytes_to_read = std::min(size - bytes_read, (size_t)bytes_left); const size_t curr_bytes_read = core_objfile->CopyData( core_memory_entry->data.GetRangeBase() + offset, bytes_to_read, (char *)buf + bytes_read); if (curr_bytes_read == 0) break; bytes_read += curr_bytes_read; } else { // Only set the error if we didn't read any bytes if (bytes_read == 0) error.SetErrorStringWithFormat( "core file does not contain 0x%" PRIx64, curr_addr); break; } } } return bytes_read; } Status ProcessMachCore::DoGetMemoryRegionInfo(addr_t load_addr, MemoryRegionInfo ®ion_info) { region_info.Clear(); const VMRangeToPermissions::Entry *permission_entry = m_core_range_infos.FindEntryThatContainsOrFollows(load_addr); if (permission_entry) { if (permission_entry->Contains(load_addr)) { region_info.GetRange().SetRangeBase(permission_entry->GetRangeBase()); region_info.GetRange().SetRangeEnd(permission_entry->GetRangeEnd()); const Flags permissions(permission_entry->data); region_info.SetReadable(permissions.Test(ePermissionsReadable) ? MemoryRegionInfo::eYes : MemoryRegionInfo::eNo); region_info.SetWritable(permissions.Test(ePermissionsWritable) ? MemoryRegionInfo::eYes : MemoryRegionInfo::eNo); region_info.SetExecutable(permissions.Test(ePermissionsExecutable) ? MemoryRegionInfo::eYes : MemoryRegionInfo::eNo); region_info.SetMapped(MemoryRegionInfo::eYes); } else if (load_addr < permission_entry->GetRangeBase()) { region_info.GetRange().SetRangeBase(load_addr); region_info.GetRange().SetRangeEnd(permission_entry->GetRangeBase()); region_info.SetReadable(MemoryRegionInfo::eNo); region_info.SetWritable(MemoryRegionInfo::eNo); region_info.SetExecutable(MemoryRegionInfo::eNo); region_info.SetMapped(MemoryRegionInfo::eNo); } return Status(); } region_info.GetRange().SetRangeBase(load_addr); region_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); region_info.SetReadable(MemoryRegionInfo::eNo); region_info.SetWritable(MemoryRegionInfo::eNo); region_info.SetExecutable(MemoryRegionInfo::eNo); region_info.SetMapped(MemoryRegionInfo::eNo); return Status(); } void ProcessMachCore::Clear() { m_thread_list.Clear(); } void ProcessMachCore::Initialize() { static llvm::once_flag g_once_flag; llvm::call_once(g_once_flag, []() { PluginManager::RegisterPlugin(GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance); }); } addr_t ProcessMachCore::GetImageInfoAddress() { // If we found both a user-process dyld and a kernel binary, we need to // decide which to prefer. if (GetCorefilePreference() == eKernelCorefile) { if (m_mach_kernel_addr != LLDB_INVALID_ADDRESS) { return m_mach_kernel_addr; } return m_dyld_addr; } else { if (m_dyld_addr != LLDB_INVALID_ADDRESS) { return m_dyld_addr; } return m_mach_kernel_addr; } } lldb_private::ObjectFile *ProcessMachCore::GetCoreObjectFile() { return m_core_module_sp->GetObjectFile(); }