//===-- NativeRegisterContextLinux_arm64.cpp ------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #if defined(__arm64__) || defined(__aarch64__) #include "NativeRegisterContextLinux_arm.h" #include "NativeRegisterContextLinux_arm64.h" #include "lldb/Host/common/NativeProcessProtocol.h" #include "lldb/Utility/DataBufferHeap.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/RegisterValue.h" #include "lldb/Utility/Status.h" #include "Plugins/Process/Linux/NativeProcessLinux.h" #include "Plugins/Process/Linux/Procfs.h" #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" #include "Plugins/Process/Utility/RegisterInfoPOSIX_arm64.h" // System includes - They have to be included after framework includes because // they define some macros which collide with variable names in other modules #include // NT_PRSTATUS and NT_FPREGSET definition #include #ifndef NT_ARM_SVE #define NT_ARM_SVE 0x405 /* ARM Scalable Vector Extension */ #endif #define REG_CONTEXT_SIZE (GetGPRSize() + GetFPRSize()) using namespace lldb; using namespace lldb_private; using namespace lldb_private::process_linux; std::unique_ptr NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux( const ArchSpec &target_arch, NativeThreadProtocol &native_thread) { switch (target_arch.GetMachine()) { case llvm::Triple::arm: return std::make_unique(target_arch, native_thread); case llvm::Triple::aarch64: return std::make_unique(target_arch, native_thread); default: llvm_unreachable("have no register context for architecture"); } } NativeRegisterContextLinux_arm64::NativeRegisterContextLinux_arm64( const ArchSpec &target_arch, NativeThreadProtocol &native_thread) : NativeRegisterContextRegisterInfo( native_thread, new RegisterInfoPOSIX_arm64(target_arch)) { ::memset(&m_fpr, 0, sizeof(m_fpr)); ::memset(&m_gpr_arm64, 0, sizeof(m_gpr_arm64)); ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs)); ::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs)); ::memset(&m_sve_header, 0, sizeof(m_sve_header)); // 16 is just a maximum value, query hardware for actual watchpoint count m_max_hwp_supported = 16; m_max_hbp_supported = 16; m_refresh_hwdebug_info = true; m_gpr_is_valid = false; m_fpu_is_valid = false; m_sve_buffer_is_valid = false; m_sve_header_is_valid = false; // SVE is not enabled until we query user_sve_header m_sve_state = SVEState::Unknown; } RegisterInfoPOSIX_arm64 & NativeRegisterContextLinux_arm64::GetRegisterInfo() const { return static_cast(*m_register_info_interface_up); } uint32_t NativeRegisterContextLinux_arm64::GetRegisterSetCount() const { return GetRegisterInfo().GetRegisterSetCount(); } const RegisterSet * NativeRegisterContextLinux_arm64::GetRegisterSet(uint32_t set_index) const { return GetRegisterInfo().GetRegisterSet(set_index); } uint32_t NativeRegisterContextLinux_arm64::GetUserRegisterCount() const { uint32_t count = 0; for (uint32_t set_index = 0; set_index < GetRegisterSetCount(); ++set_index) count += GetRegisterSet(set_index)->num_registers; return count; } Status NativeRegisterContextLinux_arm64::ReadRegister(const RegisterInfo *reg_info, RegisterValue ®_value) { Status error; if (!reg_info) { error.SetErrorString("reg_info NULL"); return error; } const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; if (reg == LLDB_INVALID_REGNUM) return Status("no lldb regnum for %s", reg_info && reg_info->name ? reg_info->name : ""); uint8_t *src; uint32_t offset = LLDB_INVALID_INDEX32; uint64_t sve_vg; std::vector sve_reg_non_live; if (IsGPR(reg)) { error = ReadGPR(); if (error.Fail()) return error; offset = reg_info->byte_offset; assert(offset < GetGPRSize()); src = (uint8_t *)GetGPRBuffer() + offset; } else if (IsFPR(reg)) { if (m_sve_state == SVEState::Disabled) { // SVE is disabled take legacy route for FPU register access error = ReadFPR(); if (error.Fail()) return error; offset = CalculateFprOffset(reg_info); assert(offset < GetFPRSize()); src = (uint8_t *)GetFPRBuffer() + offset; } else { // SVE enabled, we will read and cache SVE ptrace data error = ReadAllSVE(); if (error.Fail()) return error; // FPSR and FPCR will be located right after Z registers in // SVEState::FPSIMD while in SVEState::Full they will be located at the // end of register data after an alignment correction based on currently // selected vector length. uint32_t sve_reg_num = LLDB_INVALID_REGNUM; if (reg == GetRegisterInfo().GetRegNumFPSR()) { sve_reg_num = reg; if (m_sve_state == SVEState::Full) offset = SVE_PT_SVE_FPSR_OFFSET(sve_vq_from_vl(m_sve_header.vl)); else if (m_sve_state == SVEState::FPSIMD) offset = SVE_PT_FPSIMD_OFFSET + (32 * 16); } else if (reg == GetRegisterInfo().GetRegNumFPCR()) { sve_reg_num = reg; if (m_sve_state == SVEState::Full) offset = SVE_PT_SVE_FPCR_OFFSET(sve_vq_from_vl(m_sve_header.vl)); else if (m_sve_state == SVEState::FPSIMD) offset = SVE_PT_FPSIMD_OFFSET + (32 * 16) + 4; } else { // Extract SVE Z register value register number for this reg_info if (reg_info->value_regs && reg_info->value_regs[0] != LLDB_INVALID_REGNUM) sve_reg_num = reg_info->value_regs[0]; offset = CalculateSVEOffset(GetRegisterInfoAtIndex(sve_reg_num)); } assert(offset < GetSVEBufferSize()); src = (uint8_t *)GetSVEBuffer() + offset; } } else if (IsSVE(reg)) { if (m_sve_state == SVEState::Disabled || m_sve_state == SVEState::Unknown) return Status("SVE disabled or not supported"); if (GetRegisterInfo().IsSVERegVG(reg)) { sve_vg = GetSVERegVG(); src = (uint8_t *)&sve_vg; } else { // SVE enabled, we will read and cache SVE ptrace data error = ReadAllSVE(); if (error.Fail()) return error; if (m_sve_state == SVEState::FPSIMD) { // In FPSIMD state SVE payload mirrors legacy fpsimd struct and so // just copy 16 bytes of v register to the start of z register. All // other SVE register will be set to zero. sve_reg_non_live.resize(reg_info->byte_size, 0); src = sve_reg_non_live.data(); if (GetRegisterInfo().IsSVEZReg(reg)) { offset = CalculateSVEOffset(reg_info); assert(offset < GetSVEBufferSize()); ::memcpy(sve_reg_non_live.data(), (uint8_t *)GetSVEBuffer() + offset, 16); } } else { offset = CalculateSVEOffset(reg_info); assert(offset < GetSVEBufferSize()); src = (uint8_t *)GetSVEBuffer() + offset; } } } else return Status("failed - register wasn't recognized to be a GPR or an FPR, " "write strategy unknown"); reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size, eByteOrderLittle, error); return error; } Status NativeRegisterContextLinux_arm64::WriteRegister( const RegisterInfo *reg_info, const RegisterValue ®_value) { Status error; if (!reg_info) return Status("reg_info NULL"); const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; if (reg == LLDB_INVALID_REGNUM) return Status("no lldb regnum for %s", reg_info && reg_info->name ? reg_info->name : ""); uint8_t *dst; uint32_t offset = LLDB_INVALID_INDEX32; std::vector sve_reg_non_live; if (IsGPR(reg)) { error = ReadGPR(); if (error.Fail()) return error; assert(reg_info->byte_offset < GetGPRSize()); dst = (uint8_t *)GetGPRBuffer() + reg_info->byte_offset; ::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size); return WriteGPR(); } else if (IsFPR(reg)) { if (m_sve_state == SVEState::Disabled) { // SVE is disabled take legacy route for FPU register access error = ReadFPR(); if (error.Fail()) return error; offset = CalculateFprOffset(reg_info); assert(offset < GetFPRSize()); dst = (uint8_t *)GetFPRBuffer() + offset; ::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size); return WriteFPR(); } else { // SVE enabled, we will read and cache SVE ptrace data error = ReadAllSVE(); if (error.Fail()) return error; // FPSR and FPCR will be located right after Z registers in // SVEState::FPSIMD while in SVEState::Full they will be located at the // end of register data after an alignment correction based on currently // selected vector length. uint32_t sve_reg_num = LLDB_INVALID_REGNUM; if (reg == GetRegisterInfo().GetRegNumFPSR()) { sve_reg_num = reg; if (m_sve_state == SVEState::Full) offset = SVE_PT_SVE_FPSR_OFFSET(sve_vq_from_vl(m_sve_header.vl)); else if (m_sve_state == SVEState::FPSIMD) offset = SVE_PT_FPSIMD_OFFSET + (32 * 16); } else if (reg == GetRegisterInfo().GetRegNumFPCR()) { sve_reg_num = reg; if (m_sve_state == SVEState::Full) offset = SVE_PT_SVE_FPCR_OFFSET(sve_vq_from_vl(m_sve_header.vl)); else if (m_sve_state == SVEState::FPSIMD) offset = SVE_PT_FPSIMD_OFFSET + (32 * 16) + 4; } else { // Extract SVE Z register value register number for this reg_info if (reg_info->value_regs && reg_info->value_regs[0] != LLDB_INVALID_REGNUM) sve_reg_num = reg_info->value_regs[0]; offset = CalculateSVEOffset(GetRegisterInfoAtIndex(sve_reg_num)); } assert(offset < GetSVEBufferSize()); dst = (uint8_t *)GetSVEBuffer() + offset; ::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size); return WriteAllSVE(); } } else if (IsSVE(reg)) { if (m_sve_state == SVEState::Disabled || m_sve_state == SVEState::Unknown) return Status("SVE disabled or not supported"); else { if (GetRegisterInfo().IsSVERegVG(reg)) return Status("SVE state change operation not supported"); // Target has SVE enabled, we will read and cache SVE ptrace data error = ReadAllSVE(); if (error.Fail()) return error; // If target supports SVE but currently in FPSIMD mode. if (m_sve_state == SVEState::FPSIMD) { // Here we will check if writing this SVE register enables // SVEState::Full bool set_sve_state_full = false; const uint8_t *reg_bytes = (const uint8_t *)reg_value.GetBytes(); if (GetRegisterInfo().IsSVEZReg(reg)) { for (uint32_t i = 16; i < reg_info->byte_size; i++) { if (reg_bytes[i]) { set_sve_state_full = true; break; } } } else if (GetRegisterInfo().IsSVEPReg(reg) || reg == GetRegisterInfo().GetRegNumSVEFFR()) { for (uint32_t i = 0; i < reg_info->byte_size; i++) { if (reg_bytes[i]) { set_sve_state_full = true; break; } } } if (!set_sve_state_full && GetRegisterInfo().IsSVEZReg(reg)) { // We are writing a Z register which is zero beyond 16 bytes so copy // first 16 bytes only as SVE payload mirrors legacy fpsimd structure offset = CalculateSVEOffset(reg_info); assert(offset < GetSVEBufferSize()); dst = (uint8_t *)GetSVEBuffer() + offset; ::memcpy(dst, reg_value.GetBytes(), 16); return WriteAllSVE(); } else return Status("SVE state change operation not supported"); } else { offset = CalculateSVEOffset(reg_info); assert(offset < GetSVEBufferSize()); dst = (uint8_t *)GetSVEBuffer() + offset; ::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size); return WriteAllSVE(); } } } return Status("Failed to write register value"); } Status NativeRegisterContextLinux_arm64::ReadAllRegisterValues( lldb::DataBufferSP &data_sp) { Status error; data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0)); error = ReadGPR(); if (error.Fail()) return error; error = ReadFPR(); if (error.Fail()) return error; uint8_t *dst = data_sp->GetBytes(); ::memcpy(dst, GetGPRBuffer(), GetGPRSize()); dst += GetGPRSize(); ::memcpy(dst, GetFPRBuffer(), GetFPRSize()); return error; } Status NativeRegisterContextLinux_arm64::WriteAllRegisterValues( const lldb::DataBufferSP &data_sp) { Status error; if (!data_sp) { error.SetErrorStringWithFormat( "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided", __FUNCTION__); return error; } if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) { error.SetErrorStringWithFormat( "NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched " "data size, expected %" PRIu64 ", actual %" PRIu64, __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize()); return error; } uint8_t *src = data_sp->GetBytes(); if (src == nullptr) { error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s " "DataBuffer::GetBytes() returned a null " "pointer", __FUNCTION__); return error; } ::memcpy(GetGPRBuffer(), src, GetRegisterInfoInterface().GetGPRSize()); error = WriteGPR(); if (error.Fail()) return error; src += GetRegisterInfoInterface().GetGPRSize(); ::memcpy(GetFPRBuffer(), src, GetFPRSize()); error = WriteFPR(); if (error.Fail()) return error; return error; } bool NativeRegisterContextLinux_arm64::IsGPR(unsigned reg) const { if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) == RegisterInfoPOSIX_arm64::GPRegSet) return true; return false; } bool NativeRegisterContextLinux_arm64::IsFPR(unsigned reg) const { if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) == RegisterInfoPOSIX_arm64::FPRegSet) return true; return false; } bool NativeRegisterContextLinux_arm64::IsSVE(unsigned reg) const { if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) == RegisterInfoPOSIX_arm64::SVERegSet) return true; return false; } uint32_t NativeRegisterContextLinux_arm64::NumSupportedHardwareBreakpoints() { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); Status error; // Read hardware breakpoint and watchpoint information. error = ReadHardwareDebugInfo(); if (error.Fail()) return 0; return m_max_hbp_supported; } uint32_t NativeRegisterContextLinux_arm64::SetHardwareBreakpoint(lldb::addr_t addr, size_t size) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size); // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return LLDB_INVALID_INDEX32; uint32_t control_value = 0, bp_index = 0; // Check if size has a valid hardware breakpoint length. if (size != 4) return LLDB_INVALID_INDEX32; // Invalid size for a AArch64 hardware // breakpoint // Check 4-byte alignment for hardware breakpoint target address. if (addr & 0x03) return LLDB_INVALID_INDEX32; // Invalid address, should be 4-byte aligned. // Setup control value control_value = 0; control_value |= ((1 << size) - 1) << 5; control_value |= (2 << 1) | 1; // Iterate over stored breakpoints and find a free bp_index bp_index = LLDB_INVALID_INDEX32; for (uint32_t i = 0; i < m_max_hbp_supported; i++) { if ((m_hbr_regs[i].control & 1) == 0) { bp_index = i; // Mark last free slot } else if (m_hbr_regs[i].address == addr) { return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints. } } if (bp_index == LLDB_INVALID_INDEX32) return LLDB_INVALID_INDEX32; // Update breakpoint in local cache m_hbr_regs[bp_index].real_addr = addr; m_hbr_regs[bp_index].address = addr; m_hbr_regs[bp_index].control = control_value; // PTRACE call to set corresponding hardware breakpoint register. error = WriteHardwareDebugRegs(eDREGTypeBREAK); if (error.Fail()) { m_hbr_regs[bp_index].address = 0; m_hbr_regs[bp_index].control &= ~1; return LLDB_INVALID_INDEX32; } return bp_index; } bool NativeRegisterContextLinux_arm64::ClearHardwareBreakpoint( uint32_t hw_idx) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); LLDB_LOG(log, "hw_idx: {0}", hw_idx); // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return false; if (hw_idx >= m_max_hbp_supported) return false; // Create a backup we can revert to in case of failure. lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address; uint32_t tempControl = m_hbr_regs[hw_idx].control; m_hbr_regs[hw_idx].control &= ~1; m_hbr_regs[hw_idx].address = 0; // PTRACE call to clear corresponding hardware breakpoint register. error = WriteHardwareDebugRegs(eDREGTypeBREAK); if (error.Fail()) { m_hbr_regs[hw_idx].control = tempControl; m_hbr_regs[hw_idx].address = tempAddr; return false; } return true; } Status NativeRegisterContextLinux_arm64::GetHardwareBreakHitIndex( uint32_t &bp_index, lldb::addr_t trap_addr) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); lldb::addr_t break_addr; for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) { break_addr = m_hbr_regs[bp_index].address; if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) { m_hbr_regs[bp_index].hit_addr = trap_addr; return Status(); } } bp_index = LLDB_INVALID_INDEX32; return Status(); } Status NativeRegisterContextLinux_arm64::ClearAllHardwareBreakpoints() { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); Status error; // Read hardware breakpoint and watchpoint information. error = ReadHardwareDebugInfo(); if (error.Fail()) return error; lldb::addr_t tempAddr = 0; uint32_t tempControl = 0; for (uint32_t i = 0; i < m_max_hbp_supported; i++) { if (m_hbr_regs[i].control & 0x01) { // Create a backup we can revert to in case of failure. tempAddr = m_hbr_regs[i].address; tempControl = m_hbr_regs[i].control; // Clear watchpoints in local cache m_hbr_regs[i].control &= ~1; m_hbr_regs[i].address = 0; // Ptrace call to update hardware debug registers error = WriteHardwareDebugRegs(eDREGTypeBREAK); if (error.Fail()) { m_hbr_regs[i].control = tempControl; m_hbr_regs[i].address = tempAddr; return error; } } } return Status(); } uint32_t NativeRegisterContextLinux_arm64::NumSupportedHardwareWatchpoints() { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return 0; LLDB_LOG(log, "{0}", m_max_hwp_supported); return m_max_hwp_supported; } uint32_t NativeRegisterContextLinux_arm64::SetHardwareWatchpoint( lldb::addr_t addr, size_t size, uint32_t watch_flags) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size, watch_flags); // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return LLDB_INVALID_INDEX32; uint32_t control_value = 0, wp_index = 0; lldb::addr_t real_addr = addr; // Check if we are setting watchpoint other than read/write/access Also // update watchpoint flag to match AArch64 write-read bit configuration. switch (watch_flags) { case 1: watch_flags = 2; break; case 2: watch_flags = 1; break; case 3: break; default: return LLDB_INVALID_INDEX32; } // Check if size has a valid hardware watchpoint length. if (size != 1 && size != 2 && size != 4 && size != 8) return LLDB_INVALID_INDEX32; // Check 8-byte alignment for hardware watchpoint target address. Below is a // hack to recalculate address and size in order to make sure we can watch // non 8-byte aligned addresses as well. if (addr & 0x07) { uint8_t watch_mask = (addr & 0x07) + size; if (watch_mask > 0x08) return LLDB_INVALID_INDEX32; else if (watch_mask <= 0x02) size = 2; else if (watch_mask <= 0x04) size = 4; else size = 8; addr = addr & (~0x07); } // Setup control value control_value = watch_flags << 3; control_value |= ((1 << size) - 1) << 5; control_value |= (2 << 1) | 1; // Iterate over stored watchpoints and find a free wp_index wp_index = LLDB_INVALID_INDEX32; for (uint32_t i = 0; i < m_max_hwp_supported; i++) { if ((m_hwp_regs[i].control & 1) == 0) { wp_index = i; // Mark last free slot } else if (m_hwp_regs[i].address == addr) { return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints. } } if (wp_index == LLDB_INVALID_INDEX32) return LLDB_INVALID_INDEX32; // Update watchpoint in local cache m_hwp_regs[wp_index].real_addr = real_addr; m_hwp_regs[wp_index].address = addr; m_hwp_regs[wp_index].control = control_value; // PTRACE call to set corresponding watchpoint register. error = WriteHardwareDebugRegs(eDREGTypeWATCH); if (error.Fail()) { m_hwp_regs[wp_index].address = 0; m_hwp_regs[wp_index].control &= ~1; return LLDB_INVALID_INDEX32; } return wp_index; } bool NativeRegisterContextLinux_arm64::ClearHardwareWatchpoint( uint32_t wp_index) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "wp_index: {0}", wp_index); // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return false; if (wp_index >= m_max_hwp_supported) return false; // Create a backup we can revert to in case of failure. lldb::addr_t tempAddr = m_hwp_regs[wp_index].address; uint32_t tempControl = m_hwp_regs[wp_index].control; // Update watchpoint in local cache m_hwp_regs[wp_index].control &= ~1; m_hwp_regs[wp_index].address = 0; // Ptrace call to update hardware debug registers error = WriteHardwareDebugRegs(eDREGTypeWATCH); if (error.Fail()) { m_hwp_regs[wp_index].control = tempControl; m_hwp_regs[wp_index].address = tempAddr; return false; } return true; } Status NativeRegisterContextLinux_arm64::ClearAllHardwareWatchpoints() { // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return error; lldb::addr_t tempAddr = 0; uint32_t tempControl = 0; for (uint32_t i = 0; i < m_max_hwp_supported; i++) { if (m_hwp_regs[i].control & 0x01) { // Create a backup we can revert to in case of failure. tempAddr = m_hwp_regs[i].address; tempControl = m_hwp_regs[i].control; // Clear watchpoints in local cache m_hwp_regs[i].control &= ~1; m_hwp_regs[i].address = 0; // Ptrace call to update hardware debug registers error = WriteHardwareDebugRegs(eDREGTypeWATCH); if (error.Fail()) { m_hwp_regs[i].control = tempControl; m_hwp_regs[i].address = tempAddr; return error; } } } return Status(); } uint32_t NativeRegisterContextLinux_arm64::GetWatchpointSize(uint32_t wp_index) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "wp_index: {0}", wp_index); switch ((m_hwp_regs[wp_index].control >> 5) & 0xff) { case 0x01: return 1; case 0x03: return 2; case 0x0f: return 4; case 0xff: return 8; default: return 0; } } bool NativeRegisterContextLinux_arm64::WatchpointIsEnabled(uint32_t wp_index) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "wp_index: {0}", wp_index); if ((m_hwp_regs[wp_index].control & 0x1) == 0x1) return true; else return false; } Status NativeRegisterContextLinux_arm64::GetWatchpointHitIndex( uint32_t &wp_index, lldb::addr_t trap_addr) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr); uint32_t watch_size; lldb::addr_t watch_addr; for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) { watch_size = GetWatchpointSize(wp_index); watch_addr = m_hwp_regs[wp_index].address; if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr && trap_addr < watch_addr + watch_size) { m_hwp_regs[wp_index].hit_addr = trap_addr; return Status(); } } wp_index = LLDB_INVALID_INDEX32; return Status(); } lldb::addr_t NativeRegisterContextLinux_arm64::GetWatchpointAddress(uint32_t wp_index) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "wp_index: {0}", wp_index); if (wp_index >= m_max_hwp_supported) return LLDB_INVALID_ADDRESS; if (WatchpointIsEnabled(wp_index)) return m_hwp_regs[wp_index].real_addr; else return LLDB_INVALID_ADDRESS; } lldb::addr_t NativeRegisterContextLinux_arm64::GetWatchpointHitAddress(uint32_t wp_index) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "wp_index: {0}", wp_index); if (wp_index >= m_max_hwp_supported) return LLDB_INVALID_ADDRESS; if (WatchpointIsEnabled(wp_index)) return m_hwp_regs[wp_index].hit_addr; else return LLDB_INVALID_ADDRESS; } Status NativeRegisterContextLinux_arm64::ReadHardwareDebugInfo() { if (!m_refresh_hwdebug_info) { return Status(); } ::pid_t tid = m_thread.GetID(); int regset = NT_ARM_HW_WATCH; struct iovec ioVec; struct user_hwdebug_state dreg_state; Status error; ioVec.iov_base = &dreg_state; ioVec.iov_len = sizeof(dreg_state); error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, ®set, &ioVec, ioVec.iov_len); if (error.Fail()) return error; m_max_hwp_supported = dreg_state.dbg_info & 0xff; regset = NT_ARM_HW_BREAK; error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, ®set, &ioVec, ioVec.iov_len); if (error.Fail()) return error; m_max_hbp_supported = dreg_state.dbg_info & 0xff; m_refresh_hwdebug_info = false; return error; } Status NativeRegisterContextLinux_arm64::WriteHardwareDebugRegs(int hwbType) { struct iovec ioVec; struct user_hwdebug_state dreg_state; Status error; memset(&dreg_state, 0, sizeof(dreg_state)); ioVec.iov_base = &dreg_state; if (hwbType == eDREGTypeWATCH) { hwbType = NT_ARM_HW_WATCH; ioVec.iov_len = sizeof(dreg_state.dbg_info) + sizeof(dreg_state.pad) + (sizeof(dreg_state.dbg_regs[0]) * m_max_hwp_supported); for (uint32_t i = 0; i < m_max_hwp_supported; i++) { dreg_state.dbg_regs[i].addr = m_hwp_regs[i].address; dreg_state.dbg_regs[i].ctrl = m_hwp_regs[i].control; } } else { hwbType = NT_ARM_HW_BREAK; ioVec.iov_len = sizeof(dreg_state.dbg_info) + sizeof(dreg_state.pad) + (sizeof(dreg_state.dbg_regs[0]) * m_max_hbp_supported); for (uint32_t i = 0; i < m_max_hbp_supported; i++) { dreg_state.dbg_regs[i].addr = m_hbr_regs[i].address; dreg_state.dbg_regs[i].ctrl = m_hbr_regs[i].control; } } return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(), &hwbType, &ioVec, ioVec.iov_len); } Status NativeRegisterContextLinux_arm64::ReadGPR() { Status error; if (m_gpr_is_valid) return error; struct iovec ioVec; ioVec.iov_base = GetGPRBuffer(); ioVec.iov_len = GetGPRSize(); error = ReadRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); if (error.Success()) m_gpr_is_valid = true; return error; } Status NativeRegisterContextLinux_arm64::WriteGPR() { Status error = ReadGPR(); if (error.Fail()) return error; struct iovec ioVec; ioVec.iov_base = GetGPRBuffer(); ioVec.iov_len = GetGPRSize(); m_gpr_is_valid = false; return WriteRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); } Status NativeRegisterContextLinux_arm64::ReadFPR() { Status error; if (m_fpu_is_valid) return error; struct iovec ioVec; ioVec.iov_base = GetFPRBuffer(); ioVec.iov_len = GetFPRSize(); error = ReadRegisterSet(&ioVec, GetFPRSize(), NT_FPREGSET); if (error.Success()) m_fpu_is_valid = true; return error; } Status NativeRegisterContextLinux_arm64::WriteFPR() { Status error = ReadFPR(); if (error.Fail()) return error; struct iovec ioVec; ioVec.iov_base = GetFPRBuffer(); ioVec.iov_len = GetFPRSize(); m_fpu_is_valid = false; return WriteRegisterSet(&ioVec, GetFPRSize(), NT_FPREGSET); } void NativeRegisterContextLinux_arm64::InvalidateAllRegisters() { m_gpr_is_valid = false; m_fpu_is_valid = false; m_sve_buffer_is_valid = false; m_sve_header_is_valid = false; // Update SVE registers in case there is change in configuration. ConfigureRegisterContext(); } Status NativeRegisterContextLinux_arm64::ReadSVEHeader() { Status error; if (m_sve_header_is_valid) return error; struct iovec ioVec; ioVec.iov_base = GetSVEHeader(); ioVec.iov_len = GetSVEHeaderSize(); error = ReadRegisterSet(&ioVec, GetSVEHeaderSize(), NT_ARM_SVE); m_sve_header_is_valid = true; return error; } Status NativeRegisterContextLinux_arm64::WriteSVEHeader() { Status error; error = ReadSVEHeader(); if (error.Fail()) return error; struct iovec ioVec; ioVec.iov_base = GetSVEHeader(); ioVec.iov_len = GetSVEHeaderSize(); m_sve_buffer_is_valid = false; m_sve_header_is_valid = false; m_fpu_is_valid = false; return WriteRegisterSet(&ioVec, GetSVEHeaderSize(), NT_ARM_SVE); } Status NativeRegisterContextLinux_arm64::ReadAllSVE() { Status error; if (m_sve_buffer_is_valid) return error; struct iovec ioVec; ioVec.iov_base = GetSVEBuffer(); ioVec.iov_len = GetSVEBufferSize(); error = ReadRegisterSet(&ioVec, GetSVEBufferSize(), NT_ARM_SVE); if (error.Success()) m_sve_buffer_is_valid = true; return error; } Status NativeRegisterContextLinux_arm64::WriteAllSVE() { Status error; error = ReadAllSVE(); if (error.Fail()) return error; struct iovec ioVec; ioVec.iov_base = GetSVEBuffer(); ioVec.iov_len = GetSVEBufferSize(); m_sve_buffer_is_valid = false; m_sve_header_is_valid = false; m_fpu_is_valid = false; return WriteRegisterSet(&ioVec, GetSVEBufferSize(), NT_ARM_SVE); } void NativeRegisterContextLinux_arm64::ConfigureRegisterContext() { // Read SVE configuration data and configure register infos. if (!m_sve_header_is_valid && m_sve_state != SVEState::Disabled) { Status error = ReadSVEHeader(); if (!error.Success() && m_sve_state == SVEState::Unknown) { m_sve_state = SVEState::Disabled; GetRegisterInfo().ConfigureVectorRegisterInfos( RegisterInfoPOSIX_arm64::eVectorQuadwordAArch64); } else { if ((m_sve_header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) m_sve_state = SVEState::FPSIMD; else if ((m_sve_header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_SVE) m_sve_state = SVEState::Full; uint32_t vq = RegisterInfoPOSIX_arm64::eVectorQuadwordAArch64SVE; if (sve_vl_valid(m_sve_header.vl)) vq = sve_vq_from_vl(m_sve_header.vl); GetRegisterInfo().ConfigureVectorRegisterInfos(vq); m_sve_ptrace_payload.resize(SVE_PT_SIZE(vq, SVE_PT_REGS_SVE)); } } } uint32_t NativeRegisterContextLinux_arm64::CalculateFprOffset( const RegisterInfo *reg_info) const { return reg_info->byte_offset - GetGPRSize(); } uint32_t NativeRegisterContextLinux_arm64::CalculateSVEOffset( const RegisterInfo *reg_info) const { // Start of Z0 data is after GPRs plus 8 bytes of vg register uint32_t sve_reg_offset = LLDB_INVALID_INDEX32; if (m_sve_state == SVEState::FPSIMD) { const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; sve_reg_offset = SVE_PT_FPSIMD_OFFSET + (reg - GetRegisterInfo().GetRegNumSVEZ0()) * 16; } else if (m_sve_state == SVEState::Full) { uint32_t sve_z0_offset = GetGPRSize() + 16; sve_reg_offset = SVE_SIG_REGS_OFFSET + reg_info->byte_offset - sve_z0_offset; } return sve_reg_offset; } void *NativeRegisterContextLinux_arm64::GetSVEBuffer() { if (m_sve_state == SVEState::FPSIMD) return m_sve_ptrace_payload.data() + SVE_PT_FPSIMD_OFFSET; return m_sve_ptrace_payload.data(); } std::vector NativeRegisterContextLinux_arm64::GetExpeditedRegisters( ExpeditedRegs expType) const { std::vector expedited_reg_nums = NativeRegisterContext::GetExpeditedRegisters(expType); if (m_sve_state == SVEState::FPSIMD || m_sve_state == SVEState::Full) expedited_reg_nums.push_back(GetRegisterInfo().GetRegNumSVEVG()); return expedited_reg_nums; } #endif // defined (__arm64__) || defined (__aarch64__)