//===-- Unittests for strtold ---------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/__support/FPUtil/FPBits.h" #include "src/stdlib/strtold.h" #include "utils/UnitTest/Test.h" #include #include #include class LlvmLibcStrToLDTest : public __llvm_libc::testing::Test { public: void run_test(const char *inputString, const ptrdiff_t expectedStrLen, const uint64_t expectedRawData64, const __uint128_t expectedRawData80, const __uint128_t expectedRawData128, const int expectedErrno64 = 0, const int expectedErrno80 = 0, const int expectedErrno128 = 0) { // expectedRawData64 is the expected long double result as a uint64_t, // organized according to the IEEE754 double precision format: // // +-- 1 Sign Bit +-- 52 Mantissa bits // | | // | +-------------------------+------------------------+ // | | | // SEEEEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM // | | // +----+----+ // | // +-- 11 Exponent Bits // expectedRawData80 is the expected long double result as a __uint128_t, // organized according to the x86 extended precision format: // // +-- 1 Sign Bit // | // | +-- 1 Integer part bit (1 unless this is a subnormal) // | | // SEEEEEEEEEEEEEEEIMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM...M // | | | | // +------+------+ +---------------------------+--------------------------+ // | | // +-- 15 Exponent Bits +-- 63 Mantissa bits // expectedRawData64 is the expected long double result as a __uint128_t, // organized according to IEEE754 quadruple precision format: // // +-- 1 Sign Bit +-- 112 Mantissa bits // | | // | +----------------------------+--------------------------+ // | | | // SEEEEEEEEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM...M // | | // +------+------+ // | // +-- 15 Exponent Bits char *str_end = nullptr; #if defined(LONG_DOUBLE_IS_DOUBLE) __llvm_libc::fputil::FPBits expected_fp = __llvm_libc::fputil::FPBits(expectedRawData64); const int expected_errno = expectedErrno64; #elif defined(SPECIAL_X86_LONG_DOUBLE) __llvm_libc::fputil::FPBits expected_fp = __llvm_libc::fputil::FPBits(expectedRawData80); const int expected_errno = expectedErrno80; #else __llvm_libc::fputil::FPBits expected_fp = __llvm_libc::fputil::FPBits(expectedRawData128); const int expected_errno = expectedErrno128; #endif errno = 0; long double result = __llvm_libc::strtold(inputString, &str_end); __llvm_libc::fputil::FPBits actual_fp = __llvm_libc::fputil::FPBits(); actual_fp = __llvm_libc::fputil::FPBits(result); EXPECT_EQ(str_end - inputString, expectedStrLen); EXPECT_EQ(actual_fp.bits, expected_fp.bits); EXPECT_EQ(actual_fp.get_sign(), expected_fp.get_sign()); EXPECT_EQ(actual_fp.get_exponent(), expected_fp.get_exponent()); EXPECT_EQ(actual_fp.get_mantissa(), expected_fp.get_mantissa()); EXPECT_EQ(errno, expected_errno); } }; TEST_F(LlvmLibcStrToLDTest, SimpleTest) { run_test("123", 3, uint64_t(0x405ec00000000000), __uint128_t(0x4005f60000) << 40, __uint128_t(0x4005ec0000000000) << 64); // This should fail on Eisel-Lemire, forcing a fallback to simple decimal // conversion. run_test("12345678901234549760", 20, uint64_t(0x43e56a95319d63d8), (__uint128_t(0x403eab54a9) << 40) + __uint128_t(0x8ceb1ec400), (__uint128_t(0x403e56a95319d63d) << 64) + __uint128_t(0x8800000000000000)); // Found while looking for difficult test cases here: // https://github.com/nigeltao/parse-number-fxx-test-data/blob/main/more-test-cases/golang-org-issue-36657.txt run_test("1090544144181609348835077142190", 31, uint64_t(0x462b8779f2474dfb), (__uint128_t(0x4062dc3bcf) << 40) + __uint128_t(0x923a6fd402), (__uint128_t(0x4062b8779f2474df) << 64) + __uint128_t(0xa804bfd8c6d5c000)); run_test("0x123", 5, uint64_t(0x4072300000000000), (__uint128_t(0x4007918000) << 40), (__uint128_t(0x4007230000000000) << 64)); } // These are tests that have caused problems for doubles in the past. TEST_F(LlvmLibcStrToLDTest, Float64SpecificFailures) { run_test("3E70000000000000", 16, uint64_t(0x7FF0000000000000), (__uint128_t(0x7fff800000) << 40), (__uint128_t(0x7fff000000000000) << 64), ERANGE, ERANGE, ERANGE); run_test("358416272e-33", 13, uint64_t(0x3adbbb2a68c9d0b9), (__uint128_t(0x3fadddd953) << 40) + __uint128_t(0x464e85c400), (__uint128_t(0x3fadbbb2a68c9d0b) << 64) + __uint128_t(0x8800e7969e1c5fc8)); run_test( "2.16656806400000023841857910156251e9", 36, uint64_t(0x41e0246690000001), (__uint128_t(0x401e812334) << 40) + __uint128_t(0x8000000400), (__uint128_t(0x401e024669000000) << 64) + __uint128_t(0x800000000000018)); run_test("27949676547093071875", 20, uint64_t(0x43f83e132bc608c9), (__uint128_t(0x403fc1f099) << 40) + __uint128_t(0x5e30464402), (__uint128_t(0x403f83e132bc608c) << 64) + __uint128_t(0x8803000000000000)); } TEST_F(LlvmLibcStrToLDTest, MaxSizeNumbers) { run_test("1.1897314953572317650e4932", 26, uint64_t(0x7FF0000000000000), (__uint128_t(0x7ffeffffff) << 40) + __uint128_t(0xffffffffff), (__uint128_t(0x7ffeffffffffffff) << 64) + __uint128_t(0xfffd57322e3f8675), ERANGE, 0, 0); run_test("1.18973149535723176508e4932", 27, uint64_t(0x7FF0000000000000), (__uint128_t(0x7fff800000) << 40), (__uint128_t(0x7ffeffffffffffff) << 64) + __uint128_t(0xffffd2478338036c), ERANGE, ERANGE, 0); } // These tests check subnormal behavior for 80 bit and 128 bit floats. They will // be too small for 64 bit floats. TEST_F(LlvmLibcStrToLDTest, SubnormalTests) { run_test("1e-4950", 7, uint64_t(0), (__uint128_t(0x00000000000000000003)), (__uint128_t(0x000000000000000000057c9647e1a018)), ERANGE, ERANGE, ERANGE); run_test("1.89e-4951", 10, uint64_t(0), (__uint128_t(0x00000000000000000001)), (__uint128_t(0x0000000000000000000109778a006738)), ERANGE, ERANGE, ERANGE); run_test("4e-4966", 7, uint64_t(0), (__uint128_t(0)), (__uint128_t(0x00000000000000000000000000000001)), ERANGE, ERANGE, ERANGE); } TEST_F(LlvmLibcStrToLDTest, SmallNormalTests) { run_test("3.37e-4932", 10, uint64_t(0), (__uint128_t(0x1804cf7) << 40) + __uint128_t(0x908850712), (__uint128_t(0x10099ee12110a) << 64) + __uint128_t(0xe24b75c0f50dc0c), ERANGE, 0, 0); } TEST_F(LlvmLibcStrToLDTest, ComplexHexadecimalTests) { run_test("0x1p16383", 9, 0x7ff0000000000000, (__uint128_t(0x7ffe800000) << 40), (__uint128_t(0x7ffe000000000000) << 64), ERANGE); run_test("0x123456789abcdef", 17, 0x43723456789abcdf, (__uint128_t(0x403791a2b3) << 40) + __uint128_t(0xc4d5e6f780), (__uint128_t(0x403723456789abcd) << 64) + __uint128_t(0xef00000000000000)); run_test("0x123456789abcdef0123456789ABCDEF", 33, 0x47723456789abcdf, (__uint128_t(0x407791a2b3) << 40) + __uint128_t(0xc4d5e6f781), (__uint128_t(0x407723456789abcd) << 64) + __uint128_t(0xef0123456789abce)); } TEST_F(LlvmLibcStrToLDTest, InfTests) { run_test("INF", 3, 0x7ff0000000000000, (__uint128_t(0x7fff800000) << 40), (__uint128_t(0x7fff000000000000) << 64)); run_test("INFinity", 8, 0x7ff0000000000000, (__uint128_t(0x7fff800000) << 40), (__uint128_t(0x7fff000000000000) << 64)); run_test("-inf", 4, 0xfff0000000000000, (__uint128_t(0xffff800000) << 40), (__uint128_t(0xffff000000000000) << 64)); } TEST_F(LlvmLibcStrToLDTest, NaNTests) { run_test("NaN", 3, 0x7ff8000000000000, (__uint128_t(0x7fffc00000) << 40), (__uint128_t(0x7fff800000000000) << 64)); run_test("-nAn", 4, 0xfff8000000000000, (__uint128_t(0xffffc00000) << 40), (__uint128_t(0xffff800000000000) << 64)); run_test("NaN()", 5, 0x7ff8000000000000, (__uint128_t(0x7fffc00000) << 40), (__uint128_t(0x7fff800000000000) << 64)); run_test("NaN(1234)", 9, 0x7ff80000000004d2, (__uint128_t(0x7fffc00000) << 40) + __uint128_t(0x4d2), (__uint128_t(0x7fff800000000000) << 64) + __uint128_t(0x4d2)); run_test("NaN(0xffffffffffff)", 19, 0x7ff8ffffffffffff, (__uint128_t(0x7fffc000ff) << 40) + __uint128_t(0xffffffffff), (__uint128_t(0x7fff800000000000) << 64) + __uint128_t(0xffffffffffff)); run_test("NaN(0xfffffffffffff)", 20, 0x7fffffffffffffff, (__uint128_t(0x7fffc00fff) << 40) + __uint128_t(0xffffffffff), (__uint128_t(0x7fff800000000000) << 64) + __uint128_t(0xfffffffffffff)); run_test("NaN(0xffffffffffffffff)", 23, 0x7fffffffffffffff, (__uint128_t(0x7fffffffff) << 40) + __uint128_t(0xffffffffff), (__uint128_t(0x7fff800000000000) << 64) + __uint128_t(0xffffffffffffffff)); run_test("NaN( 1234)", 3, 0x7ff8000000000000, (__uint128_t(0x7fffc00000) << 40), (__uint128_t(0x7fff800000000000) << 64)); }