//===-- Unittests for the 128 bit integer class ---------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/__support/CPP/UInt.h" #include "utils/UnitTest/Test.h" // We want to test __llvm_libc::cpp::UInt<128> explicitly. So, for convenience, // we use a sugar which does not conflict with the UInt128 type which can // resolve to __uint128_t if the platform has it. using LL_UInt128 = __llvm_libc::cpp::UInt<128>; TEST(LlvmLibcUInt128ClassTest, BasicInit) { LL_UInt128 empty; LL_UInt128 half_val(12345); LL_UInt128 full_val({12345, 67890}); ASSERT_TRUE(half_val != full_val); } TEST(LlvmLibcUInt128ClassTest, AdditionTests) { LL_UInt128 val1(12345); LL_UInt128 val2(54321); LL_UInt128 result1(66666); EXPECT_EQ(val1 + val2, result1); EXPECT_EQ((val1 + val2), (val2 + val1)); // addition is reciprocal // Test overflow LL_UInt128 val3({0xf000000000000001, 0}); LL_UInt128 val4({0x100000000000000f, 0}); LL_UInt128 result2({0x10, 0x1}); EXPECT_EQ(val3 + val4, result2); EXPECT_EQ(val3 + val4, val4 + val3); } TEST(LlvmLibcUInt128ClassTest, MultiplicationTests) { LL_UInt128 val1({5, 0}); LL_UInt128 val2({10, 0}); LL_UInt128 result1({50, 0}); EXPECT_EQ((val1 * val2), result1); EXPECT_EQ((val1 * val2), (val2 * val1)); // multiplication is reciprocal // Check that the multiplication works accross the whole number LL_UInt128 val3({0xf, 0}); LL_UInt128 val4({0x1111111111111111, 0x1111111111111111}); LL_UInt128 result2({0xffffffffffffffff, 0xffffffffffffffff}); EXPECT_EQ((val3 * val4), result2); EXPECT_EQ((val3 * val4), (val4 * val3)); // Check that multiplication doesn't reorder the bits. LL_UInt128 val5({2, 0}); LL_UInt128 val6({0x1357024675316420, 0x0123456776543210}); LL_UInt128 result3({0x26ae048cea62c840, 0x02468aceeca86420}); EXPECT_EQ((val5 * val6), result3); EXPECT_EQ((val5 * val6), (val6 * val5)); // Make sure that multiplication handles overflow correctly. LL_UInt128 val7(2); LL_UInt128 val8({0x8000800080008000, 0x8000800080008000}); LL_UInt128 result4({0x0001000100010000, 0x0001000100010001}); EXPECT_EQ((val7 * val8), result4); EXPECT_EQ((val7 * val8), (val8 * val7)); // val9 is the 128 bit mantissa of 1e60 as a float, val10 is the mantissa for // 1e-60. They almost cancel on the high bits, but the result we're looking // for is just the low bits. The full result would be // 0x7fffffffffffffffffffffffffffffff3a4f32d17f40d08f917cf11d1e039c50 LL_UInt128 val9({0x01D762422C946590, 0x9F4F2726179A2245}); LL_UInt128 val10({0x3792F412CB06794D, 0xCDB02555653131B6}); LL_UInt128 result5({0x917cf11d1e039c50, 0x3a4f32d17f40d08f}); EXPECT_EQ((val9 * val10), result5); EXPECT_EQ((val9 * val10), (val10 * val9)); } TEST(LlvmLibcUInt128ClassTest, ShiftLeftTests) { LL_UInt128 val1(0x0123456789abcdef); LL_UInt128 result1(0x123456789abcdef0); EXPECT_EQ((val1 << 4), result1); LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0}); LL_UInt128 result2({0x02468ace00000000, 0x9abcdef013579bdf}); EXPECT_EQ((val2 << 32), result2); LL_UInt128 val22 = val2; val22 <<= 32; EXPECT_EQ(val22, result2); LL_UInt128 result3({0, 0x13579bdf02468ace}); EXPECT_EQ((val2 << 64), result3); LL_UInt128 result4({0, 0x02468ace00000000}); EXPECT_EQ((val2 << 96), result4); LL_UInt128 result5({0, 0x2468ace000000000}); EXPECT_EQ((val2 << 100), result5); LL_UInt128 result6({0, 0}); EXPECT_EQ((val2 << 128), result6); EXPECT_EQ((val2 << 256), result6); } TEST(LlvmLibcUInt128ClassTest, ShiftRightTests) { LL_UInt128 val1(0x0123456789abcdef); LL_UInt128 result1(0x00123456789abcde); EXPECT_EQ((val1 >> 4), result1); LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0}); LL_UInt128 result2({0x9abcdef013579bdf, 0x0000000012345678}); EXPECT_EQ((val2 >> 32), result2); LL_UInt128 val22 = val2; val22 >>= 32; EXPECT_EQ(val22, result2); LL_UInt128 result3({0x123456789abcdef0, 0}); EXPECT_EQ((val2 >> 64), result3); LL_UInt128 result4({0x0000000012345678, 0}); EXPECT_EQ((val2 >> 96), result4); LL_UInt128 result5({0x0000000001234567, 0}); EXPECT_EQ((val2 >> 100), result5); LL_UInt128 result6({0, 0}); EXPECT_EQ((val2 >> 128), result6); EXPECT_EQ((val2 >> 256), result6); } TEST(LlvmLibcUInt128ClassTest, AndTests) { LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000}); LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); uint64_t val64 = 0xf0f0f0f00f0f0f0f; int val32 = 0x0f0f0f0f; LL_UInt128 result128({0xf0f0000000000f0f, 0xff00ff0000000000}); LL_UInt128 result64(0xf0f0000000000f0f); LL_UInt128 result32(0x00000f0f); EXPECT_EQ((base & val128), result128); EXPECT_EQ((base & val64), result64); EXPECT_EQ((base & val32), result32); } TEST(LlvmLibcUInt128ClassTest, OrTests) { LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000}); LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); uint64_t val64 = 0xf0f0f0f00f0f0f0f; int val32 = 0x0f0f0f0f; LL_UInt128 result128({0xfffff0f00f0fffff, 0xffffffff00ff00ff}); LL_UInt128 result64({0xfffff0f00f0fffff, 0xffffffff00000000}); LL_UInt128 result32({0xffff00000f0fffff, 0xffffffff00000000}); EXPECT_EQ((base | val128), result128); EXPECT_EQ((base | val64), result64); EXPECT_EQ((base | val32), result32); } TEST(LlvmLibcUInt128ClassTest, CompoundAssignments) { LL_UInt128 x({0xffff00000000ffff, 0xffffffff00000000}); LL_UInt128 b({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); LL_UInt128 a = x; a |= b; LL_UInt128 or_result({0xfffff0f00f0fffff, 0xffffffff00ff00ff}); EXPECT_EQ(a, or_result); a = x; a &= b; LL_UInt128 and_result({0xf0f0000000000f0f, 0xff00ff0000000000}); EXPECT_EQ(a, and_result); a = x; a ^= b; LL_UInt128 xor_result({0x0f0ff0f00f0ff0f0, 0x00ff00ff00ff00ff}); EXPECT_EQ(a, xor_result); a = LL_UInt128(uint64_t(0x0123456789abcdef)); LL_UInt128 shift_left_result(uint64_t(0x123456789abcdef0)); a <<= 4; EXPECT_EQ(a, shift_left_result); a = LL_UInt128(uint64_t(0x123456789abcdef1)); LL_UInt128 shift_right_result(uint64_t(0x0123456789abcdef)); a >>= 4; EXPECT_EQ(a, shift_right_result); a = LL_UInt128({0xf000000000000001, 0}); b = LL_UInt128({0x100000000000000f, 0}); LL_UInt128 add_result({0x10, 0x1}); a += b; EXPECT_EQ(a, add_result); a = LL_UInt128({0xf, 0}); b = LL_UInt128({0x1111111111111111, 0x1111111111111111}); LL_UInt128 mul_result({0xffffffffffffffff, 0xffffffffffffffff}); a *= b; EXPECT_EQ(a, mul_result); } TEST(LlvmLibcUInt128ClassTest, UnaryPredecrement) { LL_UInt128 a = LL_UInt128({0x1111111111111111, 0x1111111111111111}); ++a; EXPECT_EQ(a, LL_UInt128({0x1111111111111112, 0x1111111111111111})); a = LL_UInt128({0xffffffffffffffff, 0x0}); ++a; EXPECT_EQ(a, LL_UInt128({0x0, 0x1})); a = LL_UInt128({0xffffffffffffffff, 0xffffffffffffffff}); ++a; EXPECT_EQ(a, LL_UInt128({0x0, 0x0})); } TEST(LlvmLibcUInt128ClassTest, EqualsTests) { LL_UInt128 a1({0xffffffff00000000, 0xffff00000000ffff}); LL_UInt128 a2({0xffffffff00000000, 0xffff00000000ffff}); LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f}); LL_UInt128 a_reversed({0xffff00000000ffff, 0xffffffff00000000}); LL_UInt128 a_upper(0xffff00000000ffff); LL_UInt128 a_lower(0xffffffff00000000); ASSERT_TRUE(a1 == a1); ASSERT_TRUE(a1 == a2); ASSERT_FALSE(a1 == b); ASSERT_FALSE(a1 == a_reversed); ASSERT_FALSE(a1 == a_lower); ASSERT_FALSE(a1 == a_upper); ASSERT_TRUE(a_lower != a_upper); } TEST(LlvmLibcUInt128ClassTest, ComparisonTests) { LL_UInt128 a({0xffffffff00000000, 0xffff00000000ffff}); LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f}); EXPECT_GT(a, b); EXPECT_GE(a, b); EXPECT_LT(b, a); EXPECT_LE(b, a); LL_UInt128 x(0xffffffff00000000); LL_UInt128 y(0x00000000ffffffff); EXPECT_GT(x, y); EXPECT_GE(x, y); EXPECT_LT(y, x); EXPECT_LE(y, x); EXPECT_LE(a, a); EXPECT_GE(a, a); }