//===-- Single-precision log(x) function ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/logf.h" #include "common_constants.h" // Lookup table for (1/f) and log(f) #include "src/__support/FPUtil/BasicOperations.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FMA.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/common.h" // This is an algorithm for log(x) in single precision which is correctly // rounded for all rounding modes, based on the implementation of log(x) from // the RLIBM project at: // https://people.cs.rutgers.edu/~sn349/rlibm // Step 1 - Range reduction: // For x = 2^m * 1.mant, log(x) = m * log(2) + log(1.m) // If x is denormal, we normalize it by multiplying x by 2^23 and subtracting // m by 23. // Step 2 - Another range reduction: // To compute log(1.mant), let f be the highest 8 bits including the hidden // bit, and d be the difference (1.mant - f), i.e. the remaining 16 bits of the // mantissa. Then we have the following approximation formula: // log(1.mant) = log(f) + log(1.mant / f) // = log(f) + log(1 + d/f) // ~ log(f) + P(d/f) // since d/f is sufficiently small. // log(f) and 1/f are then stored in two 2^7 = 128 entries look-up tables. // Step 3 - Polynomial approximation: // To compute P(d/f), we use a single degree-5 polynomial in double precision // which provides correct rounding for all but few exception values. // For more detail about how this polynomial is obtained, please refer to the // paper: // Lim, J. and Nagarakatte, S., "One Polynomial Approximation to Produce // Correctly Rounded Results of an Elementary Function for Multiple // Representations and Rounding Modes", Proceedings of the 49th ACM SIGPLAN // Symposium on Principles of Programming Languages (POPL-2022), Philadelphia, // USA, January 16-22, 2022. // https://people.cs.rutgers.edu/~sn349/papers/rlibmall-popl-2022.pdf namespace __llvm_libc { LLVM_LIBC_FUNCTION(float, logf, (float x)) { constexpr double LOG_2 = 0x1.62e42fefa39efp-1; using FPBits = typename fputil::FPBits; FPBits xbits(x); switch (FPBits(x).uintval()) { case 0x41178febU: // x = 0x1.2f1fd6p+3f if (fputil::get_round() == FE_TONEAREST) return 0x1.1fcbcep+1f; break; case 0x4c5d65a5U: // x = 0x1.bacb4ap+25f if (fputil::get_round() == FE_TONEAREST) return 0x1.1e0696p+4f; break; case 0x65d890d3U: // x = 0x1.b121a6p+76f if (fputil::get_round() == FE_TONEAREST) return 0x1.a9a3f2p+5f; break; case 0x6f31a8ecU: // x = 0x1.6351d8p+95f if (fputil::get_round() == FE_TONEAREST) return 0x1.08b512p+6f; break; case 0x3f800001U: // x = 0x1.000002p+0f if (fputil::get_round() == FE_UPWARD) return 0x1p-23f; return 0x1.fffffep-24f; case 0x500ffb03U: // x = 0x1.1ff606p+33f if (fputil::get_round() != FE_UPWARD) return 0x1.6fdd34p+4f; break; case 0x7a17f30aU: // x = 0x1.2fe614p+117f if (fputil::get_round() != FE_UPWARD) return 0x1.451436p+6f; break; case 0x5cd69e88U: // x = 0x1.ad3d1p+58f if (fputil::get_round() != FE_UPWARD) return 0x1.45c146p+5f; break; } int m = 0; if (xbits.uintval() < FPBits::MIN_NORMAL || xbits.uintval() > FPBits::MAX_NORMAL) { if (xbits.is_zero()) { return static_cast(FPBits::neg_inf()); } if (xbits.get_sign() && !xbits.is_nan()) { return FPBits::build_nan(1 << (fputil::MantissaWidth::VALUE - 1)); } if (xbits.is_inf_or_nan()) { return x; } // Normalize denormal inputs. xbits.set_val(xbits.get_val() * 0x1.0p23f); m = -23; } m += xbits.get_exponent(); // Set bits to 1.m xbits.set_unbiased_exponent(0x7F); int f_index = xbits.get_mantissa() >> 16; FPBits f = xbits; f.bits &= ~0x0000'FFFF; double d = static_cast(xbits) - static_cast(f); d *= ONE_OVER_F[f_index]; double extra_factor = fputil::multiply_add(static_cast(m), LOG_2, LOG_F[f_index]); double r = __llvm_libc::fputil::polyeval( d, extra_factor, 0x1.fffffffffffacp-1, -0x1.fffffffef9cb2p-2, 0x1.5555513bc679ap-2, -0x1.fff4805ea441p-3, 0x1.930180dbde91ap-3); return static_cast(r); } } // namespace __llvm_libc