//===-- Single-precision log1p(x) function --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/log1pf.h" #include "common_constants.h" // Lookup table for (1/f) and log(f) #include "src/__support/FPUtil/BasicOperations.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FMA.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/common.h" // This is an algorithm for log10(x) in single precision which is // correctly rounded for all rounding modes. // - An exhaustive test show that when x >= 2^45, log1pf(x) == logf(x) // for all rounding modes. // - When 2^(-8) <= |x| < 2^45, the sum (double(x) + 1.0) is exact, // so we can adapt the correctly rounded algorithm of logf to compute // log(double(x) + 1.0) correctly. For more information about the logf // algorithm, see `libc/src/math/generic/logf.cpp`. // - When |x| < 2^(-8), we use a degree-6 polynomial in double precision // generated with Sollya using the following command: // fpminimax(log(1 + x)/x, 5, [|D...|], [-2^-8; 2^-8]); namespace __llvm_libc { namespace internal { // We don't need to treat denormal static inline float log(double x) { constexpr double LOG_2 = 0x1.62e42fefa39efp-1; using FPBits = typename fputil::FPBits; FPBits xbits(x); if (xbits.is_zero()) { return static_cast(fputil::FPBits::neg_inf()); } if (xbits.uintval() > FPBits::MAX_NORMAL) { if (xbits.get_sign() && !xbits.is_nan()) { return fputil::FPBits::build_nan( 1 << (fputil::MantissaWidth::VALUE - 1)); } return static_cast(x); } double m = static_cast(xbits.get_exponent()); // Set bits to 1.m xbits.set_unbiased_exponent(0x3FF); // Get the 8 highest bits, use 7 bits (excluding the implicit hidden bit) for // lookup tables. int f_index = xbits.get_mantissa() >> 45; // fputil::MantissaWidth::VALUE - 7 FPBits f = xbits; // Clear the lowest 45 bits. f.bits &= ~0x0000'1FFF'FFFF'FFFFULL; double d = static_cast(xbits) - static_cast(f); d *= ONE_OVER_F[f_index]; double extra_factor = fputil::multiply_add(m, LOG_2, LOG_F[f_index]); double r = fputil::polyeval(d, extra_factor, 0x1.fffffffffffacp-1, -0x1.fffffffef9cb2p-2, 0x1.5555513bc679ap-2, -0x1.fff4805ea441p-3, 0x1.930180dbde91ap-3); return static_cast(r); } } // namespace internal LLVM_LIBC_FUNCTION(float, log1pf, (float x)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); double xd = static_cast(x); if (xbits.get_exponent() >= -8) { // Hard-to-round cases. switch (xbits.uintval()) { case 0x3b9315c8U: // x = 0x1.262b9p-8f if (fputil::get_round() != FE_UPWARD) return 0x1.25830cp-8f; break; case 0x3c6eb7afU: // x = 0x1.dd6f5ep-7f if (fputil::get_round() == FE_UPWARD) return 0x1.d9fd86p-7f; return 0x1.d9fd84p-7f; case 0x41078febU: // x = 0x1.0f1fd6p+3f if (fputil::get_round() != FE_UPWARD) return 0x1.1fcbcep+1f; break; case 0x5cd69e88U: // x = 0x1.ad3d1p+58f if (fputil::get_round() != FE_UPWARD) return 0x1.45c146p+5f; break; case 0x65d890d3U: // x = 0x1.b121a6p+76f if (fputil::get_round() == FE_TONEAREST) return 0x1.a9a3f2p+5f; break; case 0x6f31a8ecU: // x = 0x1.6351d8p+95f if (fputil::get_round() == FE_TONEAREST) return 0x1.08b512p+6f; break; case 0x7a17f30aU: // x = 0x1.2fe614p+117f if (fputil::get_round() != FE_UPWARD) return 0x1.451436p+6f; break; case 0xbc4d092cU: // x = -0x1.9a1258p-7f if (fputil::get_round() == FE_TONEAREST) return -0x1.9ca8bep-7f; break; case 0xbc657728U: // x = -0x1.caee5p-7f if (fputil::get_round() != FE_DOWNWARD) return -0x1.ce2cccp-7f; break; case 0xbd1d20afU: // x = -0x1.3a415ep-5f int round_mode = fputil::get_round(); if (round_mode == FE_UPWARD || round_mode == FE_TOWARDZERO) return -0x1.40711p-5f; return -0x1.407112p-5f; } return internal::log(xd + 1.0); } // Hard-to round cases. switch (xbits.uintval()) { case 0x35400003U: // x = 0x1.800006p-21f if (fputil::get_round() == FE_TONEAREST) return 0x1.7ffffep-21f; break; case 0x3710001bU: // x = 0x1.200036p-17f if (fputil::get_round() == FE_TONEAREST) return 0x1.1fffe6p-17f; break; case 0xb53ffffdU: // x = -0x1.7ffffap-21f if (fputil::get_round() != FE_DOWNWARD) return -0x1.800002p-21f; break; case 0xb70fffe5U: // x = -0x1.1fffcap-17f if (fputil::get_round() != FE_DOWNWARD) return -0x1.20001ap-17f; break; case 0xbb0ec8c4U: // x = -0x1.1d9188p-9f if (fputil::get_round() == FE_TONEAREST) return -0x1.1de14ap-9f; break; } double r; // Polymial generated with Sollya: // > fpminimax(log(1 + x)/x, 5, [|D...|], [-2^-8; 2^-8]); r = fputil::polyeval(xd, -0x1p-1, 0x1.5555555515551p-2, -0x1.ffffffff82bdap-3, 0x1.999b33348d3aep-3, -0x1.5556cae3adcc3p-3); return static_cast(fputil::multiply_add(r, xd * xd, xd)); } } // namespace __llvm_libc