//===-- Single-precision e^x function -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/expf.h" #include "src/__support/FPUtil/BasicOperations.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FMA.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/common.h" #include namespace __llvm_libc { // Lookup table for exp(m) with m = -104, ..., 89. // -104 = floor(log(single precision's min denormal)) // 89 = ceil(log(single precision's max normal)) // Table is generated with Sollya as follow: // > display = hexadecimal; // > for i from -104 to 89 do { D(exp(i)); }; static constexpr double EXP_M1[195] = { 0x1.f1e6b68529e33p-151, 0x1.525be4e4e601dp-149, 0x1.cbe0a45f75eb1p-148, 0x1.3884e838aea68p-146, 0x1.a8c1f14e2af5dp-145, 0x1.20a717e64a9bdp-143, 0x1.8851d84118908p-142, 0x1.0a9bdfb02d240p-140, 0x1.6a5bea046b42ep-139, 0x1.ec7f3b269efa8p-138, 0x1.4eafb87eab0f2p-136, 0x1.c6e2d05bbc000p-135, 0x1.35208867c2683p-133, 0x1.a425b317eeacdp-132, 0x1.1d8508fa8246ap-130, 0x1.840fbc08fdc8ap-129, 0x1.07b7112bc1ffep-127, 0x1.666d0dad2961dp-126, 0x1.e726c3f64d0fep-125, 0x1.4b0dc07cabf98p-123, 0x1.c1f2daf3b6a46p-122, 0x1.31c5957a47de2p-120, 0x1.9f96445648b9fp-119, 0x1.1a6baeadb4fd1p-117, 0x1.7fd974d372e45p-116, 0x1.04da4d1452919p-114, 0x1.62891f06b3450p-113, 0x1.e1dd273aa8a4ap-112, 0x1.4775e0840bfddp-110, 0x1.bd109d9d94bdap-109, 0x1.2e73f53fba844p-107, 0x1.9b138170d6bfep-106, 0x1.175af0cf60ec5p-104, 0x1.7baee1bffa80bp-103, 0x1.02057d1245cebp-101, 0x1.5eafffb34ba31p-100, 0x1.dca23bae16424p-99, 0x1.43e7fc88b8056p-97, 0x1.b83bf23a9a9ebp-96, 0x1.2b2b8dd05b318p-94, 0x1.969d47321e4ccp-93, 0x1.1452b7723aed2p-91, 0x1.778fe2497184cp-90, 0x1.fe7116182e9ccp-89, 0x1.5ae191a99585ap-87, 0x1.d775d87da854dp-86, 0x1.4063f8cc8bb98p-84, 0x1.b374b315f87c1p-83, 0x1.27ec458c65e3cp-81, 0x1.923372c67a074p-80, 0x1.1152eaeb73c08p-78, 0x1.737c5645114b5p-77, 0x1.f8e6c24b5592ep-76, 0x1.571db733a9d61p-74, 0x1.d257d547e083fp-73, 0x1.3ce9b9de78f85p-71, 0x1.aebabae3a41b5p-70, 0x1.24b6031b49bdap-68, 0x1.8dd5e1bb09d7ep-67, 0x1.0e5b73d1ff53dp-65, 0x1.6f741de1748ecp-64, 0x1.f36bd37f42f3ep-63, 0x1.536452ee2f75cp-61, 0x1.cd480a1b74820p-60, 0x1.39792499b1a24p-58, 0x1.aa0de4bf35b38p-57, 0x1.2188ad6ae3303p-55, 0x1.898471fca6055p-54, 0x1.0b6c3afdde064p-52, 0x1.6b7719a59f0e0p-51, 0x1.ee001eed62aa0p-50, 0x1.4fb547c775da8p-48, 0x1.c8464f7616468p-47, 0x1.36121e24d3bbap-45, 0x1.a56e0c2ac7f75p-44, 0x1.1e642baeb84a0p-42, 0x1.853f01d6d53bap-41, 0x1.0885298767e9ap-39, 0x1.67852a7007e42p-38, 0x1.e8a37a45fc32ep-37, 0x1.4c1078fe9228ap-35, 0x1.c3527e433fab1p-34, 0x1.32b48bf117da2p-32, 0x1.a0db0d0ddb3ecp-31, 0x1.1b48655f37267p-29, 0x1.81056ff2c5772p-28, 0x1.05a628c699fa1p-26, 0x1.639e3175a689dp-25, 0x1.e355bbaee85cbp-24, 0x1.4875ca227ec38p-22, 0x1.be6c6fdb01612p-21, 0x1.2f6053b981d98p-19, 0x1.9c54c3b43bc8bp-18, 0x1.18354238f6764p-16, 0x1.7cd79b5647c9bp-15, 0x1.02cf22526545ap-13, 0x1.5fc21041027adp-12, 0x1.de16b9c24a98fp-11, 0x1.44e51f113d4d6p-9, 0x1.b993fe00d5376p-8, 0x1.2c155b8213cf4p-6, 0x1.97db0ccceb0afp-5, 0x1.152aaa3bf81ccp-3, 0x1.78b56362cef38p-2, 0x1.0000000000000p+0, 0x1.5bf0a8b145769p+1, 0x1.d8e64b8d4ddaep+2, 0x1.415e5bf6fb106p+4, 0x1.b4c902e273a58p+5, 0x1.28d389970338fp+7, 0x1.936dc5690c08fp+8, 0x1.122885aaeddaap+10, 0x1.749ea7d470c6ep+11, 0x1.fa7157c470f82p+12, 0x1.5829dcf950560p+14, 0x1.d3c4488ee4f7fp+15, 0x1.3de1654d37c9ap+17, 0x1.b00b5916ac955p+18, 0x1.259ac48bf05d7p+20, 0x1.8f0ccafad2a87p+21, 0x1.0f2ebd0a80020p+23, 0x1.709348c0ea4f9p+24, 0x1.f4f22091940bdp+25, 0x1.546d8f9ed26e1p+27, 0x1.ceb088b68e804p+28, 0x1.3a6e1fd9eecfdp+30, 0x1.ab5adb9c43600p+31, 0x1.226af33b1fdc1p+33, 0x1.8ab7fb5475fb7p+34, 0x1.0c3d3920962c9p+36, 0x1.6c932696a6b5dp+37, 0x1.ef822f7f6731dp+38, 0x1.50bba3796379ap+40, 0x1.c9aae4631c056p+41, 0x1.370470aec28edp+43, 0x1.a6b765d8cdf6dp+44, 0x1.1f43fcc4b662cp+46, 0x1.866f34a725782p+47, 0x1.0953e2f3a1ef7p+49, 0x1.689e221bc8d5bp+50, 0x1.ea215a1d20d76p+51, 0x1.4d13fbb1a001ap+53, 0x1.c4b334617cc67p+54, 0x1.33a43d282a519p+56, 0x1.a220d397972ebp+57, 0x1.1c25c88df6862p+59, 0x1.8232558201159p+60, 0x1.0672a3c9eb871p+62, 0x1.64b41c6d37832p+63, 0x1.e4cf766fe49bep+64, 0x1.49767bc0483e3p+66, 0x1.bfc951eb8bb76p+67, 0x1.304d6aeca254bp+69, 0x1.9d97010884251p+70, 0x1.19103e4080b45p+72, 0x1.7e013cd114461p+73, 0x1.03996528e074cp+75, 0x1.60d4f6fdac731p+76, 0x1.df8c5af17ba3bp+77, 0x1.45e3076d61699p+79, 0x1.baed16a6e0da7p+80, 0x1.2cffdfebde1a1p+82, 0x1.9919cabefcb69p+83, 0x1.160345c9953e3p+85, 0x1.79dbc9dc53c66p+86, 0x1.00c810d464097p+88, 0x1.5d009394c5c27p+89, 0x1.da57de8f107a8p+90, 0x1.425982cf597cdp+92, 0x1.b61e5ca3a5e31p+93, 0x1.29bb825dfcf87p+95, 0x1.94a90db0d6fe2p+96, 0x1.12fec759586fdp+98, 0x1.75c1dc469e3afp+99, 0x1.fbfd219c43b04p+100, 0x1.5936d44e1a146p+102, 0x1.d531d8a7ee79cp+103, 0x1.3ed9d24a2d51bp+105, 0x1.b15cfe5b6e17bp+106, 0x1.268038c2c0e00p+108, 0x1.9044a73545d48p+109, 0x1.1002ab6218b38p+111, 0x1.71b3540cbf921p+112, 0x1.f6799ea9c414ap+113, 0x1.55779b984f3ebp+115, 0x1.d01a210c44aa4p+116, 0x1.3b63da8e91210p+118, 0x1.aca8d6b0116b8p+119, 0x1.234de9e0c74e9p+121, 0x1.8bec7503ca477p+122, 0x1.0d0eda9796b90p+124, 0x1.6db0118477245p+125, 0x1.f1056dc7bf22dp+126, 0x1.51c2cc3433801p+128, 0x1.cb108ffbec164p+129, }; // Lookup table for exp(m * 2^(-7)) with m = 0, ..., 127. // Table is generated with Sollya as follow: // > display = hexadecimal; // > for i from 0 to 127 do { D(exp(i / 128)); }; static constexpr double EXP_M2[128] = { 0x1.0000000000000p0, 0x1.0202015600446p0, 0x1.04080ab55de39p0, 0x1.06122436410ddp0, 0x1.08205601127edp0, 0x1.0a32a84e9c1f6p0, 0x1.0c49236829e8cp0, 0x1.0e63cfa7ab09dp0, 0x1.1082b577d34edp0, 0x1.12a5dd543ccc5p0, 0x1.14cd4fc989cd6p0, 0x1.16f9157587069p0, 0x1.192937074e0cdp0, 0x1.1b5dbd3f68122p0, 0x1.1d96b0eff0e79p0, 0x1.1fd41afcba45ep0, 0x1.2216045b6f5cdp0, 0x1.245c7613b8a9bp0, 0x1.26a7793f60164p0, 0x1.28f7170a755fdp0, 0x1.2b4b58b372c79p0, 0x1.2da4478b620c7p0, 0x1.3001ecf601af7p0, 0x1.32645269ea829p0, 0x1.34cb8170b5835p0, 0x1.373783a722012p0, 0x1.39a862bd3c106p0, 0x1.3c1e2876834aap0, 0x1.3e98deaa11dccp0, 0x1.41188f42c3e32p0, 0x1.439d443f5f159p0, 0x1.462707b2bac21p0, 0x1.48b5e3c3e8186p0, 0x1.4b49e2ae5ac67p0, 0x1.4de30ec211e60p0, 0x1.50817263c13cdp0, 0x1.5325180cfacf7p0, 0x1.55ce0a4c58c7cp0, 0x1.587c53c5a7af0p0, 0x1.5b2fff3210fd9p0, 0x1.5de9176045ff5p0, 0x1.60a7a734ab0e8p0, 0x1.636bb9a983258p0, 0x1.663559cf1bc7cp0, 0x1.690492cbf9433p0, 0x1.6bd96fdd034a2p0, 0x1.6eb3fc55b1e76p0, 0x1.719443a03acb9p0, 0x1.747a513dbef6ap0, 0x1.776630c678bc1p0, 0x1.7a57ede9ea23ep0, 0x1.7d4f946f0ba8dp0, 0x1.804d30347b546p0, 0x1.8350cd30ac390p0, 0x1.865a7772164c5p0, 0x1.896a3b1f66a0ep0, 0x1.8c802477b0010p0, 0x1.8f9c3fd29beafp0, 0x1.92be99a09bf00p0, 0x1.95e73e6b1b75ep0, 0x1.99163ad4b1dccp0, 0x1.9c4b9b995509bp0, 0x1.9f876d8e8c566p0, 0x1.a2c9bda3a3e78p0, 0x1.a61298e1e069cp0, 0x1.a9620c6cb3374p0, 0x1.acb82581eee54p0, 0x1.b014f179fc3b8p0, 0x1.b3787dc80f95fp0, 0x1.b6e2d7fa5eb18p0, 0x1.ba540dba56e56p0, 0x1.bdcc2cccd3c85p0, 0x1.c14b431256446p0, 0x1.c4d15e873c193p0, 0x1.c85e8d43f7cd0p0, 0x1.cbf2dd7d490f2p0, 0x1.cf8e5d84758a9p0, 0x1.d3311bc7822b4p0, 0x1.d6db26d16cd67p0, 0x1.da8c8d4a66969p0, 0x1.de455df80e3c0p0, 0x1.e205a7bdab73ep0, 0x1.e5cd799c6a54ep0, 0x1.e99ce2b397649p0, 0x1.ed73f240dc142p0, 0x1.f152b7a07bb76p0, 0x1.f539424d90f5ep0, 0x1.f927a1e24bb76p0, 0x1.fd1de6182f8c9p0, 0x1.008e0f64294abp1, 0x1.02912df5ce72ap1, 0x1.049856cd84339p1, 0x1.06a39207f0a09p1, 0x1.08b2e7d2035cfp1, 0x1.0ac6606916501p1, 0x1.0cde041b0e9aep1, 0x1.0ef9db467dcf8p1, 0x1.1119ee5ac36b6p1, 0x1.133e45d82e952p1, 0x1.1566ea50201d7p1, 0x1.1793e4652cc50p1, 0x1.19c53ccb3fc6bp1, 0x1.1bfafc47bda73p1, 0x1.1e352bb1a74adp1, 0x1.2073d3f1bd518p1, 0x1.22b6fe02a3b9cp1, 0x1.24feb2f105cb8p1, 0x1.274afbdbba4a6p1, 0x1.299be1f3e7f1cp1, 0x1.2bf16e7d2a38cp1, 0x1.2e4baacdb6614p1, 0x1.30aaa04e80d05p1, 0x1.330e587b62b28p1, 0x1.3576dce33feadp1, 0x1.37e437282d4eep1, 0x1.3a5670ff972edp1, 0x1.3ccd9432682b4p1, 0x1.3f49aa9d30590p1, 0x1.41cabe304cb34p1, 0x1.4450d8f00edd4p1, 0x1.46dc04f4e5338p1, 0x1.496c4c6b832dap1, 0x1.4c01b9950a111p1, 0x1.4e9c56c731f5dp1, 0x1.513c2e6c731d7p1, 0x1.53e14b042f9cap1, 0x1.568bb722dd593p1, 0x1.593b7d72305bbp1, }; INLINE_FMA LLVM_LIBC_FUNCTION(float, expf, (float x)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); // When x < log(2^-150) or nan if (unlikely(xbits.uintval() >= 0xc2cf'f1b5U)) { // exp(-Inf) = 0 if (xbits.is_inf()) return 0.0f; // exp(nan) = nan if (xbits.is_nan()) return x; if (fputil::get_round() == FE_UPWARD) return static_cast(FPBits(FPBits::MIN_SUBNORMAL)); if (x != 0.0f) errno = ERANGE; return 0.0f; } // x >= 89 or nan if (unlikely(!xbits.get_sign() && (xbits.uintval() >= 0x42b2'0000))) { if (xbits.uintval() < 0x7f80'0000U) { int rounding = fputil::get_round(); if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) return static_cast(FPBits(FPBits::MAX_NORMAL)); errno = ERANGE; } return x + static_cast(FPBits::inf()); } // |x| < 2^-25 if (unlikely(xbits.get_unbiased_exponent() <= 101)) { return 1.0f + x; } // For -104 < x < 89, to compute exp(x), we perform the following range // reduction: find hi, mid, lo such that: // x = hi + mid + lo, in which // hi is an integer, // mid * 2^7 is an integer // -2^(-8) <= lo < 2^-8. // In particular, // hi + mid = round(x * 2^7) * 2^(-7). // Then, // exp(x) = exp(hi + mid + lo) = exp(hi) * exp(mid) * exp(lo). // We store exp(hi) and exp(mid) in the lookup tables EXP_M1 and EXP_M2 // respectively. exp(lo) is computed using a degree-7 minimax polynomial // generated by Sollya. // x_hi = hi + mid. int x_hi = static_cast(x * 0x1.0p7f); // Subtract (hi + mid) from x to get lo. x -= static_cast(x_hi) * 0x1.0p-7f; double xd = static_cast(x); // Make sure that -2^(-8) <= lo < 2^-8. if (x >= 0x1.0p-8f) { ++x_hi; xd -= 0x1.0p-7; } if (x < -0x1.0p-8f) { --x_hi; xd += 0x1.0p-7; } x_hi += 104 << 7; // hi = x_hi >> 7 double exp_hi = EXP_M1[x_hi >> 7]; // lo = x_hi & 0x0000'007fU; double exp_mid = EXP_M2[x_hi & 0x7f]; // Degree-7 minimax polynomial generated by Sollya with the following // commands: // > display = hexadecimal; // > Q = fpminimax(expm1(x)/x, 6, [|D...|], [-2^-8, 2^-8]); // > Q; double exp_lo = fputil::polyeval( xd, 0x1p0, 0x1p0, 0x1p-1, 0x1.5555555555555p-3, 0x1.55555555553ap-5, 0x1.1111111204dfcp-7, 0x1.6c16cb2da593ap-10, 0x1.9ff1648996d2ep-13); return static_cast(exp_hi * exp_mid * exp_lo); } } // namespace __llvm_libc