//===--- Implementation of a platform independent file data structure -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "file.h" #include "src/__support/CPP/ArrayRef.h" #include #include #include namespace __llvm_libc { size_t File::write_unlocked(const void *data, size_t len) { if (!write_allowed()) { errno = EBADF; err = true; return 0; } prev_op = FileOp::WRITE; if (bufmode == _IOFBF) { // fully buffered return write_unlocked_fbf(data, len); } else if (bufmode == _IOLBF) { // line buffered return write_unlocked_lbf(data, len); } else /*if (bufmode == _IONBF) */ { // unbuffered size_t ret_val = write_unlocked_nbf(data, len); flush_unlocked(); return ret_val; } } size_t File::write_unlocked_nbf(const void *data, size_t len) { if (pos > 0) { // If the buffer is not empty // Flush the buffer const size_t write_size = pos; size_t bytes_written = platform_write(this, buf, write_size); pos = 0; // Buffer is now empty so reset pos to the beginning. // If less bytes were written than expected, then an error occurred. if (bytes_written < write_size) { err = true; return 0; // No bytes from data were written, so return 0. } } size_t written = platform_write(this, data, len); if (written < len) err = true; return written; } size_t File::write_unlocked_fbf(const void *data, size_t len) { const size_t init_pos = pos; const size_t bufspace = bufsize - pos; // If data is too large to be buffered at all, then just write it unbuffered. if (len > bufspace + bufsize) return write_unlocked_nbf(data, len); // we split |data| (conceptually) using the split point. Then we handle the // two pieces separately. const size_t split_point = len < bufspace ? len : bufspace; // The primary piece is the piece of |data| we want to write to the buffer // before flushing. It will always fit into the buffer, since the split point // is defined as being min(len, bufspace), and it will always exist if len is // non-zero. cpp::ArrayRef primary(data, split_point); // The second piece is the remainder of |data|. It is written to the buffer if // it fits, or written directly to the output if it doesn't. If the primary // piece fits entirely in the buffer, the remainder may be nothing. cpp::ArrayRef remainder( static_cast(data) + split_point, len - split_point); cpp::MutableArrayRef bufref(buf, bufsize); // Copy the first piece into the buffer. // TODO: Replace the for loop below with a call to internal memcpy. for (size_t i = 0; i < primary.size(); ++i) bufref[pos + i] = primary[i]; pos += primary.size(); // If there is no remainder, we can return early, since the first piece has // fit completely into the buffer. if (remainder.size() == 0) return len; // We need to flush the buffer now, since there is still data and the buffer // is full. const size_t write_size = pos; size_t bytes_written = platform_write(this, buf, write_size); pos = 0; // Buffer is now empty so reset pos to the beginning. // If less bytes were written than expected, then an error occurred. Return // the number of bytes that have been written from |data|. if (bytes_written < write_size) { err = true; return bytes_written <= init_pos ? 0 : bytes_written - init_pos; } // The second piece is handled basically the same as the first, although we // know that if the second piece has data in it then the buffer has been // flushed, meaning that pos is always 0. if (remainder.size() < bufsize) { // TODO: Replace the for loop below with a call to internal memcpy. for (size_t i = 0; i < remainder.size(); ++i) bufref[i] = remainder[i]; pos = remainder.size(); } else { size_t bytes_written = platform_write(this, remainder.data(), remainder.size()); // If less bytes were written than expected, then an error occurred. Return // the number of bytes that have been written from |data|. if (bytes_written < remainder.size()) { err = true; return primary.size() + bytes_written; } } return len; } size_t File::write_unlocked_lbf(const void *data, size_t len) { constexpr char NEWLINE_CHAR = '\n'; size_t last_newline = len; for (size_t i = len; i > 1; --i) { if (static_cast(data)[i - 1] == NEWLINE_CHAR) { last_newline = i - 1; break; } } // If there is no newline, treat this as fully buffered. if (last_newline == len) { return write_unlocked_fbf(data, len); } // we split |data| (conceptually) using the split point. Then we handle the // two pieces separately. const size_t split_point = last_newline + 1; // The primary piece is everything in |data| up to the newline. It's written // unbuffered to the output. cpp::ArrayRef primary(data, split_point); // The second piece is the remainder of |data|. It is written fully buffered, // meaning it may stay in the buffer if it fits. cpp::ArrayRef remainder( static_cast(data) + split_point, len - split_point); size_t written = 0; written = write_unlocked_nbf(primary.data(), primary.size()); if (written < primary.size()) { err = true; return written; } flush_unlocked(); written += write_unlocked_fbf(remainder.data(), remainder.size()); if (written < len) { err = true; return written; } return len; } size_t File::read_unlocked(void *data, size_t len) { if (!read_allowed()) { errno = EBADF; err = true; return 0; } prev_op = FileOp::READ; cpp::MutableArrayRef bufref(buf, bufsize); cpp::MutableArrayRef dataref(data, len); // Because read_limit is always greater than equal to pos, // available_data is never a wrapped around value. size_t available_data = read_limit - pos; if (len <= available_data) { // TODO: Replace the for loop below with a call to internal memcpy. for (size_t i = 0; i < len; ++i) dataref[i] = bufref[i + pos]; pos += len; return len; } // Copy all of the available data. // TODO: Replace the for loop with a call to internal memcpy. for (size_t i = 0; i < available_data; ++i) dataref[i] = bufref[i + pos]; read_limit = pos = 0; // Reset the pointers. size_t to_fetch = len - available_data; if (to_fetch > bufsize) { size_t fetched_size = platform_read(this, data, to_fetch); if (fetched_size < to_fetch) { if (errno == 0) eof = true; else err = true; return available_data + fetched_size; } return len; } // Fetch and buffer another buffer worth of data. size_t fetched_size = platform_read(this, buf, bufsize); read_limit += fetched_size; size_t transfer_size = fetched_size >= to_fetch ? to_fetch : fetched_size; for (size_t i = 0; i < transfer_size; ++i) dataref[i] = bufref[i]; pos += transfer_size; if (fetched_size < to_fetch) { if (errno == 0) eof = true; else err = true; } return transfer_size + available_data; } int File::seek(long offset, int whence) { FileLock lock(this); if (prev_op == FileOp::WRITE && pos > 0) { size_t transferred_size = platform_write(this, buf, pos); if (transferred_size < pos) { err = true; return -1; } } else if (prev_op == FileOp::READ && whence == SEEK_CUR) { // More data could have been read out from the platform file than was // required. So, we have to adjust the offset we pass to platform seek // function. Note that read_limit >= pos is always true. offset -= (read_limit - pos); } pos = read_limit = 0; prev_op = FileOp::SEEK; // Reset the eof flag as a seek might move the file positon to some place // readable. eof = false; return platform_seek(this, offset, whence); } int File::flush_unlocked() { if (prev_op == FileOp::WRITE && pos > 0) { size_t transferred_size = platform_write(this, buf, pos); if (transferred_size < pos) { err = true; return -1; } pos = 0; return platform_flush(this); } // TODO: Add POSIX behavior for input streams. return 0; } int File::close() { { FileLock lock(this); if (prev_op == FileOp::WRITE && pos > 0) { size_t transferred_size = platform_write(this, buf, pos); if (transferred_size < pos) { err = true; return -1; } } if (platform_close(this) != 0) return -1; if (own_buf) free(buf); } free(this); return 0; } void File::set_buffer(void *buffer, size_t size, bool owned) { if (own_buf) free(buf); buf = buffer; bufsize = size; own_buf = owned; } File::ModeFlags File::mode_flags(const char *mode) { // First character in |mode| should be 'a', 'r' or 'w'. if (*mode != 'a' && *mode != 'r' && *mode != 'w') return 0; // There should be exaclty one main mode ('a', 'r' or 'w') character. // If there are more than one main mode characters listed, then // we will consider |mode| as incorrect and return 0; int main_mode_count = 0; ModeFlags flags = 0; for (; *mode != '\0'; ++mode) { switch (*mode) { case 'r': flags |= static_cast(OpenMode::READ); ++main_mode_count; break; case 'w': flags |= static_cast(OpenMode::WRITE); ++main_mode_count; break; case '+': flags |= static_cast(OpenMode::PLUS); break; case 'b': flags |= static_cast(ContentType::BINARY); break; case 'a': flags |= static_cast(OpenMode::APPEND); ++main_mode_count; break; case 'x': flags |= static_cast(CreateType::EXCLUSIVE); break; default: return 0; } } if (main_mode_count != 1) return 0; return flags; } } // namespace __llvm_libc