//===-- Nearest integer floating-point operations ---------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC_SUPPORT_FPUTIL_NEAREST_INTEGER_OPERATIONS_H #define LLVM_LIBC_SRC_SUPPORT_FPUTIL_NEAREST_INTEGER_OPERATIONS_H #include "FEnvUtils.h" #include "FPBits.h" #include "src/__support/CPP/TypeTraits.h" #include #if math_errhandling & MATH_ERRNO #include #endif namespace __llvm_libc { namespace fputil { template ::Value, int> = 0> static inline T trunc(T x) { FPBits bits(x); // If x is infinity or NaN, return it. // If it is zero also we should return it as is, but the logic // later in this function takes care of it. But not doing a zero // check, we improve the run time of non-zero values. if (bits.isInfOrNaN()) return x; int exponent = bits.getExponent(); // If the exponent is greater than the most negative mantissa // exponent, then x is already an integer. if (exponent >= static_cast(MantissaWidth::value)) return x; // If the exponent is such that abs(x) is less than 1, then return 0. if (exponent <= -1) { if (bits.getSign()) return T(-0.0); else return T(0.0); } int trimSize = MantissaWidth::value - exponent; bits.setMantissa((bits.getMantissa() >> trimSize) << trimSize); return T(bits); } template ::Value, int> = 0> static inline T ceil(T x) { FPBits bits(x); // If x is infinity NaN or zero, return it. if (bits.isInfOrNaN() || bits.isZero()) return x; bool isNeg = bits.getSign(); int exponent = bits.getExponent(); // If the exponent is greater than the most negative mantissa // exponent, then x is already an integer. if (exponent >= static_cast(MantissaWidth::value)) return x; if (exponent <= -1) { if (isNeg) return T(-0.0); else return T(1.0); } uint32_t trimSize = MantissaWidth::value - exponent; bits.setMantissa((bits.getMantissa() >> trimSize) << trimSize); T truncValue = T(bits); // If x is already an integer, return it. if (truncValue == x) return x; // If x is negative, the ceil operation is equivalent to the trunc operation. if (isNeg) return truncValue; return truncValue + T(1.0); } template ::Value, int> = 0> static inline T floor(T x) { FPBits bits(x); if (bits.getSign()) { return -ceil(-x); } else { return trunc(x); } } template ::Value, int> = 0> static inline T round(T x) { using UIntType = typename FPBits::UIntType; FPBits bits(x); // If x is infinity NaN or zero, return it. if (bits.isInfOrNaN() || bits.isZero()) return x; bool isNeg = bits.getSign(); int exponent = bits.getExponent(); // If the exponent is greater than the most negative mantissa // exponent, then x is already an integer. if (exponent >= static_cast(MantissaWidth::value)) return x; if (exponent == -1) { // Absolute value of x is greater than equal to 0.5 but less than 1. if (isNeg) return T(-1.0); else return T(1.0); } if (exponent <= -2) { // Absolute value of x is less than 0.5. if (isNeg) return T(-0.0); else return T(0.0); } uint32_t trimSize = MantissaWidth::value - exponent; bool halfBitSet = bits.getMantissa() & (UIntType(1) << (trimSize - 1)); bits.setMantissa((bits.getMantissa() >> trimSize) << trimSize); T truncValue = T(bits); // If x is already an integer, return it. if (truncValue == x) return x; if (!halfBitSet) { // Franctional part is less than 0.5 so round value is the // same as the trunc value. return truncValue; } else { return isNeg ? truncValue - T(1.0) : truncValue + T(1.0); } } template ::Value, int> = 0> static inline T roundUsingCurrentRoundingMode(T x) { using UIntType = typename FPBits::UIntType; FPBits bits(x); // If x is infinity NaN or zero, return it. if (bits.isInfOrNaN() || bits.isZero()) return x; bool isNeg = bits.getSign(); int exponent = bits.getExponent(); int roundingMode = getRound(); // If the exponent is greater than the most negative mantissa // exponent, then x is already an integer. if (exponent >= static_cast(MantissaWidth::value)) return x; if (exponent <= -1) { switch (roundingMode) { case FE_DOWNWARD: return isNeg ? T(-1.0) : T(0.0); case FE_UPWARD: return isNeg ? T(-0.0) : T(1.0); case FE_TOWARDZERO: return isNeg ? T(-0.0) : T(0.0); case FE_TONEAREST: if (exponent <= -2 || bits.getMantissa() == 0) return isNeg ? T(-0.0) : T(0.0); // abs(x) <= 0.5 else return isNeg ? T(-1.0) : T(1.0); // abs(x) > 0.5 default: __builtin_unreachable(); } } uint32_t trimSize = MantissaWidth::value - exponent; FPBits newBits = bits; newBits.setMantissa((bits.getMantissa() >> trimSize) << trimSize); T truncValue = T(newBits); // If x is already an integer, return it. if (truncValue == x) return x; UIntType trimValue = bits.getMantissa() & ((UIntType(1) << trimSize) - 1); UIntType halfValue = (UIntType(1) << (trimSize - 1)); // If exponent is 0, trimSize will be equal to the mantissa width, and // truncIsOdd` will not be correct. So, we handle it as a special case // below. UIntType truncIsOdd = newBits.getMantissa() & (UIntType(1) << trimSize); switch (roundingMode) { case FE_DOWNWARD: return isNeg ? truncValue - T(1.0) : truncValue; case FE_UPWARD: return isNeg ? truncValue : truncValue + T(1.0); case FE_TOWARDZERO: return truncValue; case FE_TONEAREST: if (trimValue > halfValue) { return isNeg ? truncValue - T(1.0) : truncValue + T(1.0); } else if (trimValue == halfValue) { if (exponent == 0) return isNeg ? T(-2.0) : T(2.0); if (truncIsOdd) return isNeg ? truncValue - T(1.0) : truncValue + T(1.0); else return truncValue; } else { return truncValue; } default: __builtin_unreachable(); } } namespace internal { template ::Value && cpp::IsIntegral::Value, int> = 0> static inline I roundedFloatToSignedInteger(F x) { constexpr I IntegerMin = (I(1) << (sizeof(I) * 8 - 1)); constexpr I IntegerMax = -(IntegerMin + 1); FPBits bits(x); auto setDomainErrorAndRaiseInvalid = []() { #if math_errhandling & MATH_ERRNO errno = EDOM; #endif #if math_errhandling & MATH_ERREXCEPT raiseExcept(FE_INVALID); #endif }; if (bits.isInfOrNaN()) { setDomainErrorAndRaiseInvalid(); return bits.getSign() ? IntegerMin : IntegerMax; } int exponent = bits.getExponent(); constexpr int exponentLimit = sizeof(I) * 8 - 1; if (exponent > exponentLimit) { setDomainErrorAndRaiseInvalid(); return bits.getSign() ? IntegerMin : IntegerMax; } else if (exponent == exponentLimit) { if (bits.getSign() == 0 || bits.getMantissa() != 0) { setDomainErrorAndRaiseInvalid(); return bits.getSign() ? IntegerMin : IntegerMax; } // If the control reaches here, then it means that the rounded // value is the most negative number for the signed integer type I. } // For all other cases, if `x` can fit in the integer type `I`, // we just return `x`. Implicit conversion will convert the // floating point value to the exact integer value. return x; } } // namespace internal template ::Value && cpp::IsIntegral::Value, int> = 0> static inline I roundToSignedInteger(F x) { return internal::roundedFloatToSignedInteger(round(x)); } template ::Value && cpp::IsIntegral::Value, int> = 0> static inline I roundToSignedIntegerUsingCurrentRoundingMode(F x) { return internal::roundedFloatToSignedInteger( roundUsingCurrentRoundingMode(x)); } } // namespace fputil } // namespace __llvm_libc #endif // LLVM_LIBC_SRC_SUPPORT_FPUTIL_NEAREST_INTEGER_OPERATIONS_H