//===-- lib/Evaluate/type.cpp ---------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "flang/Evaluate/type.h" #include "flang/Common/idioms.h" #include "flang/Common/template.h" #include "flang/Evaluate/expression.h" #include "flang/Evaluate/fold.h" #include "flang/Parser/characters.h" #include "flang/Semantics/scope.h" #include "flang/Semantics/symbol.h" #include "flang/Semantics/tools.h" #include "flang/Semantics/type.h" #include #include #include // IsDescriptor() predicate: true when a symbol is implemented // at runtime with a descriptor. namespace Fortran::semantics { static bool IsDescriptor(const DeclTypeSpec *type) { if (type) { if (auto dynamicType{evaluate::DynamicType::From(*type)}) { return dynamicType->RequiresDescriptor(); } } return false; } static bool IsDescriptor(const ObjectEntityDetails &details) { if (IsDescriptor(details.type())) { return true; } for (const ShapeSpec &shapeSpec : details.shape()) { const auto &lb{shapeSpec.lbound().GetExplicit()}; const auto &ub{shapeSpec.ubound().GetExplicit()}; if (!lb || !ub || !IsConstantExpr(*lb) || !IsConstantExpr(*ub)) { return true; } } return false; } static bool IsDescriptor(const ProcEntityDetails &details) { // A procedure pointer or dummy procedure must be & is a descriptor if // and only if it requires a static link. // TODO: refine this placeholder return details.HasExplicitInterface(); } bool IsDescriptor(const Symbol &symbol) { return common::visit( common::visitors{ [&](const ObjectEntityDetails &d) { return IsAllocatableOrPointer(symbol) || IsDescriptor(d); }, [&](const ProcEntityDetails &d) { return (symbol.attrs().test(Attr::POINTER) || symbol.attrs().test(Attr::EXTERNAL)) && IsDescriptor(d); }, [&](const EntityDetails &d) { return IsDescriptor(d.type()); }, [](const AssocEntityDetails &d) { if (const auto &expr{d.expr()}) { if (expr->Rank() > 0) { return true; } if (const auto dynamicType{expr->GetType()}) { if (dynamicType->RequiresDescriptor()) { return true; } } } return false; }, [](const SubprogramDetails &d) { return d.isFunction() && IsDescriptor(d.result()); }, [](const UseDetails &d) { return IsDescriptor(d.symbol()); }, [](const HostAssocDetails &d) { return IsDescriptor(d.symbol()); }, [](const auto &) { return false; }, }, symbol.details()); } } // namespace Fortran::semantics namespace Fortran::evaluate { DynamicType::DynamicType(int k, const semantics::ParamValue &pv) : category_{TypeCategory::Character}, kind_{k} { CHECK(IsValidKindOfIntrinsicType(category_, kind_)); if (auto n{ToInt64(pv.GetExplicit())}) { knownLength_ = *n; } else { charLengthParamValue_ = &pv; } } template inline bool PointeeComparison(const A *x, const A *y) { return x == y || (x && y && *x == *y); } bool DynamicType::operator==(const DynamicType &that) const { return category_ == that.category_ && kind_ == that.kind_ && PointeeComparison(charLengthParamValue_, that.charLengthParamValue_) && knownLength().has_value() == that.knownLength().has_value() && (!knownLength() || *knownLength() == *that.knownLength()) && PointeeComparison(derived_, that.derived_); } std::optional> DynamicType::GetCharLength() const { if (category_ == TypeCategory::Character) { if (knownLength()) { return AsExpr(Constant(*knownLength())); } else if (charLengthParamValue_) { if (auto length{charLengthParamValue_->GetExplicit()}) { return ConvertToType(std::move(*length)); } } } return std::nullopt; } static constexpr std::size_t RealKindBytes(int kind) { switch (kind) { case 3: // non-IEEE 16-bit format (truncated 32-bit) return 2; case 10: // 80387 80-bit extended precision case 12: // possible variant spelling return 16; default: return kind; } } std::size_t DynamicType::GetAlignment(const FoldingContext &context) const { switch (category_) { case TypeCategory::Integer: case TypeCategory::Character: case TypeCategory::Logical: return std::min(kind_, context.maxAlignment()); case TypeCategory::Real: case TypeCategory::Complex: return std::min(RealKindBytes(kind_), context.maxAlignment()); case TypeCategory::Derived: if (derived_ && derived_->scope()) { return derived_->scope()->alignment().value_or(1); } break; } return 1; // needs to be after switch to dodge a bogus gcc warning } std::optional> DynamicType::MeasureSizeInBytes( FoldingContext &context, bool aligned) const { switch (category_) { case TypeCategory::Integer: return Expr{kind_}; case TypeCategory::Real: return Expr{RealKindBytes(kind_)}; case TypeCategory::Complex: return Expr{2 * RealKindBytes(kind_)}; case TypeCategory::Character: if (auto len{GetCharLength()}) { return Fold(context, Expr{kind_} * std::move(*len)); } break; case TypeCategory::Logical: return Expr{kind_}; case TypeCategory::Derived: if (derived_ && derived_->scope()) { auto size{derived_->scope()->size()}; auto align{aligned ? derived_->scope()->alignment().value_or(0) : 0}; auto alignedSize{align > 0 ? ((size + align - 1) / align) * align : size}; return Expr{ static_cast(alignedSize)}; } break; } return std::nullopt; } bool DynamicType::IsAssumedLengthCharacter() const { return category_ == TypeCategory::Character && charLengthParamValue_ && charLengthParamValue_->isAssumed(); } bool DynamicType::IsNonConstantLengthCharacter() const { if (category_ != TypeCategory::Character) { return false; } else if (knownLength()) { return false; } else if (!charLengthParamValue_) { return true; } else if (const auto &expr{charLengthParamValue_->GetExplicit()}) { return !IsConstantExpr(*expr); } else { return true; } } bool DynamicType::IsTypelessIntrinsicArgument() const { return category_ == TypeCategory::Integer && kind_ == TypelessKind; } const semantics::DerivedTypeSpec *GetDerivedTypeSpec( const std::optional &type) { return type ? GetDerivedTypeSpec(*type) : nullptr; } const semantics::DerivedTypeSpec *GetDerivedTypeSpec(const DynamicType &type) { if (type.category() == TypeCategory::Derived && !type.IsUnlimitedPolymorphic()) { return &type.GetDerivedTypeSpec(); } else { return nullptr; } } static const semantics::Symbol *FindParentComponent( const semantics::DerivedTypeSpec &derived) { const semantics::Symbol &typeSymbol{derived.typeSymbol()}; if (const semantics::Scope * scope{typeSymbol.scope()}) { const auto &dtDetails{typeSymbol.get()}; if (auto extends{dtDetails.GetParentComponentName()}) { if (auto iter{scope->find(*extends)}; iter != scope->cend()) { if (const Symbol & symbol{*iter->second}; symbol.test(Symbol::Flag::ParentComp)) { return &symbol; } } } } return nullptr; } const semantics::DerivedTypeSpec *GetParentTypeSpec( const semantics::DerivedTypeSpec &derived) { if (const semantics::Symbol * parent{FindParentComponent(derived)}) { return &parent->get() .type() ->derivedTypeSpec(); } else { return nullptr; } } // Compares two derived type representations to see whether they both // represent the "same type" in the sense of section 7.5.2.4. using SetOfDerivedTypePairs = std::set>; static bool AreSameComponent(const semantics::Symbol &, const semantics::Symbol &, SetOfDerivedTypePairs &inProgress); static bool AreSameDerivedType(const semantics::DerivedTypeSpec &x, const semantics::DerivedTypeSpec &y, SetOfDerivedTypePairs &inProgress) { const auto &xSymbol{x.typeSymbol()}; const auto &ySymbol{y.typeSymbol()}; if (&x == &y || xSymbol == ySymbol) { return true; } auto thisQuery{std::make_pair(&x, &y)}; if (inProgress.find(thisQuery) != inProgress.end()) { return true; // recursive use of types in components } inProgress.insert(thisQuery); const auto &xDetails{xSymbol.get()}; const auto &yDetails{ySymbol.get()}; if (xSymbol.name() != ySymbol.name()) { return false; } if (!(xDetails.sequence() && yDetails.sequence()) && !(xSymbol.attrs().test(semantics::Attr::BIND_C) && ySymbol.attrs().test(semantics::Attr::BIND_C))) { // PGI does not enforce this requirement; all other Fortran // processors do with a hard error when violations are caught. return false; } // Compare the component lists in their orders of declaration. auto xEnd{xDetails.componentNames().cend()}; auto yComponentName{yDetails.componentNames().cbegin()}; auto yEnd{yDetails.componentNames().cend()}; for (auto xComponentName{xDetails.componentNames().cbegin()}; xComponentName != xEnd; ++xComponentName, ++yComponentName) { if (yComponentName == yEnd || *xComponentName != *yComponentName || !xSymbol.scope() || !ySymbol.scope()) { return false; } const auto xLookup{xSymbol.scope()->find(*xComponentName)}; const auto yLookup{ySymbol.scope()->find(*yComponentName)}; if (xLookup == xSymbol.scope()->end() || yLookup == ySymbol.scope()->end() || !AreSameComponent(*xLookup->second, *yLookup->second, inProgress)) { return false; } } return yComponentName == yEnd; } static bool AreSameComponent(const semantics::Symbol &x, const semantics::Symbol &y, SetOfDerivedTypePairs & /* inProgress - not yet used */) { if (x.attrs() != y.attrs()) { return false; } if (x.attrs().test(semantics::Attr::PRIVATE)) { return false; } // TODO: compare types, parameters, bounds, &c. return x.has() == y.has(); } static bool AreCompatibleDerivedTypes(const semantics::DerivedTypeSpec *x, const semantics::DerivedTypeSpec *y, bool isPolymorphic) { if (!x || !y) { return false; } else { SetOfDerivedTypePairs inProgress; if (AreSameDerivedType(*x, *y, inProgress)) { return true; } else { return isPolymorphic && AreCompatibleDerivedTypes(x, GetParentTypeSpec(*y), true); } } } static bool AreCompatibleTypes(const DynamicType &x, const DynamicType &y, bool ignoreTypeParameterValues) { if (x.IsUnlimitedPolymorphic()) { return true; } else if (y.IsUnlimitedPolymorphic()) { return false; } else if (x.category() != y.category()) { return false; } else if (x.category() != TypeCategory::Derived) { return x.kind() == y.kind(); } else { const auto *xdt{GetDerivedTypeSpec(x)}; const auto *ydt{GetDerivedTypeSpec(y)}; return AreCompatibleDerivedTypes(xdt, ydt, x.IsPolymorphic()) && (ignoreTypeParameterValues || (xdt && ydt && AreTypeParamCompatible(*xdt, *ydt))); } } // See 7.3.2.3 (5) & 15.5.2.4 bool DynamicType::IsTkCompatibleWith(const DynamicType &that) const { return AreCompatibleTypes(*this, that, false); } // 16.9.165 std::optional DynamicType::SameTypeAs(const DynamicType &that) const { bool x{AreCompatibleTypes(*this, that, true)}; bool y{AreCompatibleTypes(that, *this, true)}; if (x == y) { return x; } else { // If either is unlimited polymorphic, the result is unknown. return std::nullopt; } } // 16.9.76 std::optional DynamicType::ExtendsTypeOf(const DynamicType &that) const { if (IsUnlimitedPolymorphic() || that.IsUnlimitedPolymorphic()) { return std::nullopt; // unknown } else if (!AreCompatibleDerivedTypes(evaluate::GetDerivedTypeSpec(that), evaluate::GetDerivedTypeSpec(*this), true)) { return false; } else if (that.IsPolymorphic()) { return std::nullopt; // unknown } else { return true; } } std::optional DynamicType::From( const semantics::DeclTypeSpec &type) { if (const auto *intrinsic{type.AsIntrinsic()}) { if (auto kind{ToInt64(intrinsic->kind())}) { TypeCategory category{intrinsic->category()}; if (IsValidKindOfIntrinsicType(category, *kind)) { if (category == TypeCategory::Character) { const auto &charType{type.characterTypeSpec()}; return DynamicType{static_cast(*kind), charType.length()}; } else { return DynamicType{category, static_cast(*kind)}; } } } } else if (const auto *derived{type.AsDerived()}) { return DynamicType{ *derived, type.category() == semantics::DeclTypeSpec::ClassDerived}; } else if (type.category() == semantics::DeclTypeSpec::ClassStar) { return DynamicType::UnlimitedPolymorphic(); } else if (type.category() == semantics::DeclTypeSpec::TypeStar) { return DynamicType::AssumedType(); } else { common::die("DynamicType::From(DeclTypeSpec): failed"); } return std::nullopt; } std::optional DynamicType::From(const semantics::Symbol &symbol) { return From(symbol.GetType()); // Symbol -> DeclTypeSpec -> DynamicType } DynamicType DynamicType::ResultTypeForMultiply(const DynamicType &that) const { switch (category_) { case TypeCategory::Integer: switch (that.category_) { case TypeCategory::Integer: return DynamicType{TypeCategory::Integer, std::max(kind_, that.kind_)}; case TypeCategory::Real: case TypeCategory::Complex: return that; default: CRASH_NO_CASE; } break; case TypeCategory::Real: switch (that.category_) { case TypeCategory::Integer: return *this; case TypeCategory::Real: return DynamicType{TypeCategory::Real, std::max(kind_, that.kind_)}; case TypeCategory::Complex: return DynamicType{TypeCategory::Complex, std::max(kind_, that.kind_)}; default: CRASH_NO_CASE; } break; case TypeCategory::Complex: switch (that.category_) { case TypeCategory::Integer: return *this; case TypeCategory::Real: case TypeCategory::Complex: return DynamicType{TypeCategory::Complex, std::max(kind_, that.kind_)}; default: CRASH_NO_CASE; } break; case TypeCategory::Logical: switch (that.category_) { case TypeCategory::Logical: return DynamicType{TypeCategory::Logical, std::max(kind_, that.kind_)}; default: CRASH_NO_CASE; } break; default: CRASH_NO_CASE; } return *this; } bool DynamicType::RequiresDescriptor() const { return IsPolymorphic() || IsNonConstantLengthCharacter() || (derived_ && CountNonConstantLenParameters(*derived_) > 0); } bool DynamicType::HasDeferredTypeParameter() const { if (derived_) { for (const auto &pair : derived_->parameters()) { if (pair.second.isDeferred()) { return true; } } } return charLengthParamValue_ && charLengthParamValue_->isDeferred(); } bool SomeKind::operator==( const SomeKind &that) const { return PointeeComparison(derivedTypeSpec_, that.derivedTypeSpec_); } int SelectedCharKind(const std::string &s, int defaultKind) { // 16.9.168 auto lower{parser::ToLowerCaseLetters(s)}; auto n{lower.size()}; while (n > 0 && lower[0] == ' ') { lower.erase(0, 1); --n; } while (n > 0 && lower[n - 1] == ' ') { lower.erase(--n, 1); } if (lower == "ascii") { return 1; } else if (lower == "ucs-2") { return 2; } else if (lower == "iso_10646" || lower == "ucs-4") { return 4; } else if (lower == "default") { return defaultKind; } else { return -1; } } class SelectedIntKindVisitor { public: explicit SelectedIntKindVisitor(std::int64_t p) : precision_{p} {} using Result = std::optional; using Types = IntegerTypes; template Result Test() const { if (Scalar::RANGE >= precision_) { return T::kind; } else { return std::nullopt; } } private: std::int64_t precision_; }; int SelectedIntKind(std::int64_t precision) { if (auto kind{common::SearchTypes(SelectedIntKindVisitor{precision})}) { return *kind; } else { return -1; } } class SelectedRealKindVisitor { public: explicit SelectedRealKindVisitor(std::int64_t p, std::int64_t r) : precision_{p}, range_{r} {} using Result = std::optional; using Types = RealTypes; template Result Test() const { if (Scalar::PRECISION >= precision_ && Scalar::RANGE >= range_) { return {T::kind}; } else { return std::nullopt; } } private: std::int64_t precision_, range_; }; int SelectedRealKind( std::int64_t precision, std::int64_t range, std::int64_t radix) { if (radix != 2) { return -5; } if (auto kind{ common::SearchTypes(SelectedRealKindVisitor{precision, range})}) { return *kind; } // No kind has both sufficient precision and sufficient range. // The negative return value encodes whether any kinds exist that // could satisfy either constraint independently. bool pOK{common::SearchTypes(SelectedRealKindVisitor{precision, 0})}; bool rOK{common::SearchTypes(SelectedRealKindVisitor{0, range})}; if (pOK) { if (rOK) { return -4; } else { return -2; } } else { if (rOK) { return -1; } else { return -3; } } } std::optional ComparisonType( const DynamicType &t1, const DynamicType &t2) { switch (t1.category()) { case TypeCategory::Integer: switch (t2.category()) { case TypeCategory::Integer: return DynamicType{TypeCategory::Integer, std::max(t1.kind(), t2.kind())}; case TypeCategory::Real: case TypeCategory::Complex: return t2; default: return std::nullopt; } case TypeCategory::Real: switch (t2.category()) { case TypeCategory::Integer: return t1; case TypeCategory::Real: case TypeCategory::Complex: return DynamicType{t2.category(), std::max(t1.kind(), t2.kind())}; default: return std::nullopt; } case TypeCategory::Complex: switch (t2.category()) { case TypeCategory::Integer: return t1; case TypeCategory::Real: case TypeCategory::Complex: return DynamicType{TypeCategory::Complex, std::max(t1.kind(), t2.kind())}; default: return std::nullopt; } case TypeCategory::Character: switch (t2.category()) { case TypeCategory::Character: return DynamicType{ TypeCategory::Character, std::max(t1.kind(), t2.kind())}; default: return std::nullopt; } case TypeCategory::Logical: switch (t2.category()) { case TypeCategory::Logical: return DynamicType{TypeCategory::Logical, LogicalResult::kind}; default: return std::nullopt; } default: return std::nullopt; } } } // namespace Fortran::evaluate