/* SPDX-License-Identifier: GPL-2.0 */ /* * Common LiteX header providing * helper functions for accessing CSRs. * * Copyright (C) 2019-2020 Antmicro */ #ifndef _LINUX_LITEX_H #define _LINUX_LITEX_H #include #include #include /* * The parameters below are true for LiteX SoCs configured for 8-bit CSR Bus, * 32-bit aligned. * * Supporting other configurations will require extending the logic in this * header and in the LiteX SoC controller driver. */ #define LITEX_SUBREG_SIZE 0x1 #define LITEX_SUBREG_SIZE_BIT (LITEX_SUBREG_SIZE * 8) /* LiteX subregisters of any width are always aligned on a 4-byte boundary */ #define LITEX_SUBREG_ALIGN 0x4 static inline void _write_litex_subregister(u32 val, void __iomem *addr) { writel((u32 __force)cpu_to_le32(val), addr); } static inline u32 _read_litex_subregister(void __iomem *addr) { return le32_to_cpu((__le32 __force)readl(addr)); } #define WRITE_LITEX_SUBREGISTER(val, base_offset, subreg_id) \ _write_litex_subregister(val, (base_offset) + \ LITEX_SUBREG_ALIGN * (subreg_id)) #define READ_LITEX_SUBREGISTER(base_offset, subreg_id) \ _read_litex_subregister((base_offset) + \ LITEX_SUBREG_ALIGN * (subreg_id)) /* * LiteX SoC Generator, depending on the configuration, can split a single * logical CSR (Control&Status Register) into a series of consecutive physical * registers. * * For example, in the configuration with 8-bit CSR Bus, 32-bit aligned (the * default one for 32-bit CPUs) a 32-bit logical CSR will be generated as four * 32-bit physical registers, each one containing one byte of meaningful data. * * For details see: https://github.com/enjoy-digital/litex/wiki/CSR-Bus * * The purpose of `litex_set_reg`/`litex_get_reg` is to implement the logic * of writing to/reading from the LiteX CSR in a single place that can be * then reused by all LiteX drivers. */ /** * litex_set_reg() - Writes the value to the LiteX CSR (Control&Status Register) * @reg: Address of the CSR * @reg_size: The width of the CSR expressed in the number of bytes * @val: Value to be written to the CSR * * In the currently supported LiteX configuration (8-bit CSR Bus, 32-bit aligned), * a 32-bit LiteX CSR is generated as 4 consecutive 32-bit physical registers, * each one containing one byte of meaningful data. * * This function splits a single possibly multi-byte write into a series of * single-byte writes with a proper offset. */ static inline void litex_set_reg(void __iomem *reg, ulong reg_size, ulong val) { ulong shifted_data, shift, i; for (i = 0; i < reg_size; ++i) { shift = ((reg_size - i - 1) * LITEX_SUBREG_SIZE_BIT); shifted_data = val >> shift; WRITE_LITEX_SUBREGISTER(shifted_data, reg, i); } } /** * litex_get_reg() - Reads the value of the LiteX CSR (Control&Status Register) * @reg: Address of the CSR * @reg_size: The width of the CSR expressed in the number of bytes * * Return: Value read from the CSR * * In the currently supported LiteX configuration (8-bit CSR Bus, 32-bit aligned), * a 32-bit LiteX CSR is generated as 4 consecutive 32-bit physical registers, * each one containing one byte of meaningful data. * * This function generates a series of single-byte reads with a proper offset * and joins their results into a single multi-byte value. */ static inline ulong litex_get_reg(void __iomem *reg, ulong reg_size) { ulong shifted_data, shift, i; ulong result = 0; for (i = 0; i < reg_size; ++i) { shifted_data = READ_LITEX_SUBREGISTER(reg, i); shift = ((reg_size - i - 1) * LITEX_SUBREG_SIZE_BIT); result |= (shifted_data << shift); } return result; } static inline void litex_write8(void __iomem *reg, u8 val) { WRITE_LITEX_SUBREGISTER(val, reg, 0); } static inline void litex_write16(void __iomem *reg, u16 val) { WRITE_LITEX_SUBREGISTER(val >> 8, reg, 0); WRITE_LITEX_SUBREGISTER(val, reg, 1); } static inline void litex_write32(void __iomem *reg, u32 val) { WRITE_LITEX_SUBREGISTER(val >> 24, reg, 0); WRITE_LITEX_SUBREGISTER(val >> 16, reg, 1); WRITE_LITEX_SUBREGISTER(val >> 8, reg, 2); WRITE_LITEX_SUBREGISTER(val, reg, 3); } static inline void litex_write64(void __iomem *reg, u64 val) { WRITE_LITEX_SUBREGISTER(val >> 56, reg, 0); WRITE_LITEX_SUBREGISTER(val >> 48, reg, 1); WRITE_LITEX_SUBREGISTER(val >> 40, reg, 2); WRITE_LITEX_SUBREGISTER(val >> 32, reg, 3); WRITE_LITEX_SUBREGISTER(val >> 24, reg, 4); WRITE_LITEX_SUBREGISTER(val >> 16, reg, 5); WRITE_LITEX_SUBREGISTER(val >> 8, reg, 6); WRITE_LITEX_SUBREGISTER(val, reg, 7); } static inline u8 litex_read8(void __iomem *reg) { return READ_LITEX_SUBREGISTER(reg, 0); } static inline u16 litex_read16(void __iomem *reg) { return (READ_LITEX_SUBREGISTER(reg, 0) << 8) | (READ_LITEX_SUBREGISTER(reg, 1)); } static inline u32 litex_read32(void __iomem *reg) { return (READ_LITEX_SUBREGISTER(reg, 0) << 24) | (READ_LITEX_SUBREGISTER(reg, 1) << 16) | (READ_LITEX_SUBREGISTER(reg, 2) << 8) | (READ_LITEX_SUBREGISTER(reg, 3)); } static inline u64 litex_read64(void __iomem *reg) { return ((u64)READ_LITEX_SUBREGISTER(reg, 0) << 56) | ((u64)READ_LITEX_SUBREGISTER(reg, 1) << 48) | ((u64)READ_LITEX_SUBREGISTER(reg, 2) << 40) | ((u64)READ_LITEX_SUBREGISTER(reg, 3) << 32) | ((u64)READ_LITEX_SUBREGISTER(reg, 4) << 24) | ((u64)READ_LITEX_SUBREGISTER(reg, 5) << 16) | ((u64)READ_LITEX_SUBREGISTER(reg, 6) << 8) | ((u64)READ_LITEX_SUBREGISTER(reg, 7)); } #endif /* _LINUX_LITEX_H */