// SPDX-License-Identifier: GPL-2.0-or-later /* * CPU Microcode Update Driver for Linux * * Copyright (C) 2000-2006 Tigran Aivazian * 2006 Shaohua Li * 2013-2016 Borislav Petkov * * X86 CPU microcode early update for Linux: * * Copyright (C) 2012 Fenghua Yu * H Peter Anvin" * (C) 2015 Borislav Petkov * * This driver allows to upgrade microcode on x86 processors. */ #define pr_fmt(fmt) "microcode: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #define DRIVER_VERSION "2.2" static struct microcode_ops *microcode_ops; bool dis_ucode_ldr = true; /* * Synchronization. * * All non cpu-hotplug-callback call sites use: * * - cpus_read_lock/unlock() to synchronize with * the cpu-hotplug-callback call sites. * * We guarantee that only a single cpu is being * updated at any particular moment of time. */ struct ucode_cpu_info ucode_cpu_info[NR_CPUS]; struct cpu_info_ctx { struct cpu_signature *cpu_sig; int err; }; /* * Those patch levels cannot be updated to newer ones and thus should be final. */ static u32 final_levels[] = { 0x01000098, 0x0100009f, 0x010000af, 0, /* T-101 terminator */ }; /* * Check the current patch level on this CPU. * * Returns: * - true: if update should stop * - false: otherwise */ static bool amd_check_current_patch_level(void) { u32 lvl, dummy, i; u32 *levels; native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy); levels = final_levels; for (i = 0; levels[i]; i++) { if (lvl == levels[i]) return true; } return false; } static bool __init check_loader_disabled_bsp(void) { static const char *__dis_opt_str = "dis_ucode_ldr"; const char *cmdline = boot_command_line; const char *option = __dis_opt_str; /* * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not * completely accurate as xen pv guests don't see that CPUID bit set but * that's good enough as they don't land on the BSP path anyway. */ if (native_cpuid_ecx(1) & BIT(31)) return true; if (x86_cpuid_vendor() == X86_VENDOR_AMD) { if (amd_check_current_patch_level()) return true; } if (cmdline_find_option_bool(cmdline, option) <= 0) dis_ucode_ldr = false; return dis_ucode_ldr; } void __init load_ucode_bsp(void) { unsigned int cpuid_1_eax; bool intel = true; if (!have_cpuid_p()) return; cpuid_1_eax = native_cpuid_eax(1); switch (x86_cpuid_vendor()) { case X86_VENDOR_INTEL: if (x86_family(cpuid_1_eax) < 6) return; break; case X86_VENDOR_AMD: if (x86_family(cpuid_1_eax) < 0x10) return; intel = false; break; default: return; } if (check_loader_disabled_bsp()) return; if (intel) load_ucode_intel_bsp(); else load_ucode_amd_bsp(cpuid_1_eax); } void load_ucode_ap(void) { unsigned int cpuid_1_eax; if (dis_ucode_ldr) return; cpuid_1_eax = native_cpuid_eax(1); switch (x86_cpuid_vendor()) { case X86_VENDOR_INTEL: if (x86_family(cpuid_1_eax) >= 6) load_ucode_intel_ap(); break; case X86_VENDOR_AMD: if (x86_family(cpuid_1_eax) >= 0x10) load_ucode_amd_ap(cpuid_1_eax); break; default: break; } } struct cpio_data __init find_microcode_in_initrd(const char *path) { #ifdef CONFIG_BLK_DEV_INITRD unsigned long start = 0; size_t size; #ifdef CONFIG_X86_32 size = boot_params.hdr.ramdisk_size; /* Early load on BSP has a temporary mapping. */ if (size) start = initrd_start_early; #else /* CONFIG_X86_64 */ size = (unsigned long)boot_params.ext_ramdisk_size << 32; size |= boot_params.hdr.ramdisk_size; if (size) { start = (unsigned long)boot_params.ext_ramdisk_image << 32; start |= boot_params.hdr.ramdisk_image; start += PAGE_OFFSET; } #endif /* * Fixup the start address: after reserve_initrd() runs, initrd_start * has the virtual address of the beginning of the initrd. It also * possibly relocates the ramdisk. In either case, initrd_start contains * the updated address so use that instead. */ if (initrd_start) start = initrd_start; return find_cpio_data(path, (void *)start, size, NULL); #else /* !CONFIG_BLK_DEV_INITRD */ return (struct cpio_data){ NULL, 0, "" }; #endif } static void reload_early_microcode(unsigned int cpu) { int vendor, family; vendor = x86_cpuid_vendor(); family = x86_cpuid_family(); switch (vendor) { case X86_VENDOR_INTEL: if (family >= 6) reload_ucode_intel(); break; case X86_VENDOR_AMD: if (family >= 0x10) reload_ucode_amd(cpu); break; default: break; } } /* fake device for request_firmware */ static struct platform_device *microcode_pdev; #ifdef CONFIG_MICROCODE_LATE_LOADING /* * Late loading dance. Why the heavy-handed stomp_machine effort? * * - HT siblings must be idle and not execute other code while the other sibling * is loading microcode in order to avoid any negative interactions caused by * the loading. * * - In addition, microcode update on the cores must be serialized until this * requirement can be relaxed in the future. Right now, this is conservative * and good. */ enum sibling_ctrl { /* Spinwait with timeout */ SCTRL_WAIT, /* Invoke the microcode_apply() callback */ SCTRL_APPLY, /* Proceed without invoking the microcode_apply() callback */ SCTRL_DONE, }; struct microcode_ctrl { enum sibling_ctrl ctrl; enum ucode_state result; unsigned int ctrl_cpu; }; static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl); static atomic_t late_cpus_in, late_cpus_out; static bool wait_for_cpus(atomic_t *cnt) { unsigned int timeout; WARN_ON_ONCE(atomic_dec_return(cnt) < 0); for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { if (!atomic_read(cnt)) return true; udelay(1); if (!(timeout % USEC_PER_MSEC)) touch_nmi_watchdog(); } /* Prevent the late comers from making progress and let them time out */ atomic_inc(cnt); return false; } static int load_cpus_stopped(void *unused) { int cpu = smp_processor_id(); enum ucode_state ret; /* * Wait for all CPUs to arrive. A load will not be attempted unless all * CPUs show up. * */ if (!wait_for_cpus(&late_cpus_in)) { this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); return 0; } /* * On an SMT system, it suffices to load the microcode on one sibling of * the core because the microcode engine is shared between the threads. * Synchronization still needs to take place so that no concurrent * loading attempts happen on multiple threads of an SMT core. See * below. */ if (cpumask_first(topology_sibling_cpumask(cpu)) != cpu) goto wait_for_siblings; ret = microcode_ops->apply_microcode(cpu); this_cpu_write(ucode_ctrl.result, ret); wait_for_siblings: if (!wait_for_cpus(&late_cpus_out)) panic("Timeout during microcode update!\n"); /* * At least one thread has completed update on each core. * For others, simply call the update to make sure the * per-cpu cpuinfo can be updated with right microcode * revision. */ if (cpumask_first(topology_sibling_cpumask(cpu)) == cpu) return 0; ret = microcode_ops->apply_microcode(cpu); this_cpu_write(ucode_ctrl.result, ret); return 0; } static int load_late_stop_cpus(void) { unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0; int old_rev = boot_cpu_data.microcode; struct cpuinfo_x86 prev_info; pr_err("Attempting late microcode loading - it is dangerous and taints the kernel.\n"); pr_err("You should switch to early loading, if possible.\n"); atomic_set(&late_cpus_in, num_online_cpus()); atomic_set(&late_cpus_out, num_online_cpus()); /* * Take a snapshot before the microcode update in order to compare and * check whether any bits changed after an update. */ store_cpu_caps(&prev_info); stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask); /* Analyze the results */ for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { switch (per_cpu(ucode_ctrl.result, cpu)) { case UCODE_UPDATED: updated++; break; case UCODE_TIMEOUT: timedout++; break; case UCODE_OK: siblings++; break; default: failed++; break; } } if (microcode_ops->finalize_late_load) microcode_ops->finalize_late_load(!updated); if (!updated) { /* Nothing changed. */ if (!failed && !timedout) return 0; pr_err("update failed: %u CPUs failed %u CPUs timed out\n", failed, timedout); return -EIO; } add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings); if (failed || timedout) { pr_err("load incomplete. %u CPUs timed out or failed\n", num_online_cpus() - (updated + siblings)); } pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode); microcode_check(&prev_info); return updated + siblings == num_online_cpus() ? 0 : -EIO; } /* * This function does two things: * * 1) Ensure that all required CPUs which are present and have been booted * once are online. * * To pass this check, all primary threads must be online. * * If the microcode load is not safe against NMI then all SMT threads * must be online as well because they still react to NMIs when they are * soft-offlined and parked in one of the play_dead() variants. So if a * NMI hits while the primary thread updates the microcode the resulting * behaviour is undefined. The default play_dead() implementation on * modern CPUs uses MWAIT, which is also not guaranteed to be safe * against a microcode update which affects MWAIT. * * 2) Initialize the per CPU control structure */ static bool setup_cpus(void) { struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, }; unsigned int cpu; for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { if (!cpu_online(cpu)) { if (topology_is_primary_thread(cpu) || !microcode_ops->nmi_safe) { pr_err("CPU %u not online\n", cpu); return false; } } /* * Initialize the per CPU state. This is core scope for now, * but prepared to take package or system scope into account. */ ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu)); per_cpu(ucode_ctrl, cpu) = ctrl; } return true; } static int load_late_locked(void) { if (!setup_cpus()) return -EBUSY; switch (microcode_ops->request_microcode_fw(0, µcode_pdev->dev)) { case UCODE_NEW: return load_late_stop_cpus(); case UCODE_NFOUND: return -ENOENT; default: return -EBADFD; } } static ssize_t reload_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; ssize_t ret; ret = kstrtoul(buf, 0, &val); if (ret || val != 1) return -EINVAL; cpus_read_lock(); ret = load_late_locked(); cpus_read_unlock(); return ret ? : size; } static DEVICE_ATTR_WO(reload); #endif static ssize_t version_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; return sprintf(buf, "0x%x\n", uci->cpu_sig.rev); } static ssize_t processor_flags_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; return sprintf(buf, "0x%x\n", uci->cpu_sig.pf); } static DEVICE_ATTR_RO(version); static DEVICE_ATTR_RO(processor_flags); static struct attribute *mc_default_attrs[] = { &dev_attr_version.attr, &dev_attr_processor_flags.attr, NULL }; static const struct attribute_group mc_attr_group = { .attrs = mc_default_attrs, .name = "microcode", }; static void microcode_fini_cpu(int cpu) { if (microcode_ops->microcode_fini_cpu) microcode_ops->microcode_fini_cpu(cpu); } /** * microcode_bsp_resume - Update boot CPU microcode during resume. */ void microcode_bsp_resume(void) { int cpu = smp_processor_id(); struct ucode_cpu_info *uci = ucode_cpu_info + cpu; if (uci->mc) microcode_ops->apply_microcode(cpu); else reload_early_microcode(cpu); } static struct syscore_ops mc_syscore_ops = { .resume = microcode_bsp_resume, }; static int mc_cpu_online(unsigned int cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; struct device *dev = get_cpu_device(cpu); memset(uci, 0, sizeof(*uci)); microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig); cpu_data(cpu).microcode = uci->cpu_sig.rev; if (!cpu) boot_cpu_data.microcode = uci->cpu_sig.rev; if (sysfs_create_group(&dev->kobj, &mc_attr_group)) pr_err("Failed to create group for CPU%d\n", cpu); return 0; } static int mc_cpu_down_prep(unsigned int cpu) { struct device *dev = get_cpu_device(cpu); microcode_fini_cpu(cpu); sysfs_remove_group(&dev->kobj, &mc_attr_group); return 0; } static struct attribute *cpu_root_microcode_attrs[] = { #ifdef CONFIG_MICROCODE_LATE_LOADING &dev_attr_reload.attr, #endif NULL }; static const struct attribute_group cpu_root_microcode_group = { .name = "microcode", .attrs = cpu_root_microcode_attrs, }; static int __init microcode_init(void) { struct device *dev_root; struct cpuinfo_x86 *c = &boot_cpu_data; int error; if (dis_ucode_ldr) return -EINVAL; if (c->x86_vendor == X86_VENDOR_INTEL) microcode_ops = init_intel_microcode(); else if (c->x86_vendor == X86_VENDOR_AMD) microcode_ops = init_amd_microcode(); else pr_err("no support for this CPU vendor\n"); if (!microcode_ops) return -ENODEV; microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0); if (IS_ERR(microcode_pdev)) return PTR_ERR(microcode_pdev); dev_root = bus_get_dev_root(&cpu_subsys); if (dev_root) { error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group); put_device(dev_root); if (error) { pr_err("Error creating microcode group!\n"); goto out_pdev; } } register_syscore_ops(&mc_syscore_ops); cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online", mc_cpu_online, mc_cpu_down_prep); pr_info("Microcode Update Driver: v%s.", DRIVER_VERSION); return 0; out_pdev: platform_device_unregister(microcode_pdev); return error; } late_initcall(microcode_init);