/* SPDX-License-Identifier: BSD-3-Clause * Copyright 2018-2020 NXP */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rte_pmd_dpaa2_qdma.h" #include "dpaa2_qdma.h" #include "dpaa2_qdma_logs.h" #define DPAA2_QDMA_NO_PREFETCH "no_prefetch" /* Dynamic log type identifier */ int dpaa2_qdma_logtype; uint32_t dpaa2_coherent_no_alloc_cache; uint32_t dpaa2_coherent_alloc_cache; /* QDMA device */ static struct qdma_device q_dev; /* QDMA H/W queues list */ TAILQ_HEAD(qdma_hw_queue_list, qdma_hw_queue); static struct qdma_hw_queue_list qdma_queue_list = TAILQ_HEAD_INITIALIZER(qdma_queue_list); /* QDMA per core data */ static struct qdma_per_core_info qdma_core_info[RTE_MAX_LCORE]; static inline int qdma_populate_fd_pci(phys_addr_t src, phys_addr_t dest, uint32_t len, struct qbman_fd *fd, struct rte_qdma_rbp *rbp, int ser) { fd->simple_pci.saddr_lo = lower_32_bits((uint64_t) (src)); fd->simple_pci.saddr_hi = upper_32_bits((uint64_t) (src)); fd->simple_pci.len_sl = len; fd->simple_pci.bmt = 1; fd->simple_pci.fmt = 3; fd->simple_pci.sl = 1; fd->simple_pci.ser = ser; fd->simple_pci.sportid = rbp->sportid; /*pcie 3 */ fd->simple_pci.srbp = rbp->srbp; if (rbp->srbp) fd->simple_pci.rdttype = 0; else fd->simple_pci.rdttype = dpaa2_coherent_alloc_cache; /*dest is pcie memory */ fd->simple_pci.dportid = rbp->dportid; /*pcie 3 */ fd->simple_pci.drbp = rbp->drbp; if (rbp->drbp) fd->simple_pci.wrttype = 0; else fd->simple_pci.wrttype = dpaa2_coherent_no_alloc_cache; fd->simple_pci.daddr_lo = lower_32_bits((uint64_t) (dest)); fd->simple_pci.daddr_hi = upper_32_bits((uint64_t) (dest)); return 0; } static inline int qdma_populate_fd_ddr(phys_addr_t src, phys_addr_t dest, uint32_t len, struct qbman_fd *fd, int ser) { fd->simple_ddr.saddr_lo = lower_32_bits((uint64_t) (src)); fd->simple_ddr.saddr_hi = upper_32_bits((uint64_t) (src)); fd->simple_ddr.len = len; fd->simple_ddr.bmt = 1; fd->simple_ddr.fmt = 3; fd->simple_ddr.sl = 1; fd->simple_ddr.ser = ser; /** * src If RBP=0 {NS,RDTTYPE[3:0]}: 0_1011 * Coherent copy of cacheable memory, * lookup in downstream cache, no allocate * on miss */ fd->simple_ddr.rns = 0; fd->simple_ddr.rdttype = dpaa2_coherent_alloc_cache; /** * dest If RBP=0 {NS,WRTTYPE[3:0]}: 0_0111 * Coherent write of cacheable memory, * lookup in downstream cache, no allocate on miss */ fd->simple_ddr.wns = 0; fd->simple_ddr.wrttype = dpaa2_coherent_no_alloc_cache; fd->simple_ddr.daddr_lo = lower_32_bits((uint64_t) (dest)); fd->simple_ddr.daddr_hi = upper_32_bits((uint64_t) (dest)); return 0; } static void dpaa2_qdma_populate_fle(struct qbman_fle *fle, uint64_t fle_iova, struct rte_qdma_rbp *rbp, uint64_t src, uint64_t dest, size_t len, uint32_t flags, uint32_t fmt) { struct qdma_sdd *sdd; uint64_t sdd_iova; sdd = (struct qdma_sdd *) ((uintptr_t)(uint64_t)fle - QDMA_FLE_FLE_OFFSET + QDMA_FLE_SDD_OFFSET); sdd_iova = fle_iova - QDMA_FLE_FLE_OFFSET + QDMA_FLE_SDD_OFFSET; /* first frame list to source descriptor */ DPAA2_SET_FLE_ADDR(fle, sdd_iova); DPAA2_SET_FLE_LEN(fle, (2 * (sizeof(struct qdma_sdd)))); /* source and destination descriptor */ if (rbp && rbp->enable) { /* source */ sdd->read_cmd.portid = rbp->sportid; sdd->rbpcmd_simple.pfid = rbp->spfid; sdd->rbpcmd_simple.vfid = rbp->svfid; if (rbp->srbp) { sdd->read_cmd.rbp = rbp->srbp; sdd->read_cmd.rdtype = DPAA2_RBP_MEM_RW; } else { sdd->read_cmd.rdtype = dpaa2_coherent_no_alloc_cache; } sdd++; /* destination */ sdd->write_cmd.portid = rbp->dportid; sdd->rbpcmd_simple.pfid = rbp->dpfid; sdd->rbpcmd_simple.vfid = rbp->dvfid; if (rbp->drbp) { sdd->write_cmd.rbp = rbp->drbp; sdd->write_cmd.wrttype = DPAA2_RBP_MEM_RW; } else { sdd->write_cmd.wrttype = dpaa2_coherent_alloc_cache; } } else { sdd->read_cmd.rdtype = dpaa2_coherent_no_alloc_cache; sdd++; sdd->write_cmd.wrttype = dpaa2_coherent_alloc_cache; } fle++; /* source frame list to source buffer */ if (flags & RTE_QDMA_JOB_SRC_PHY) { DPAA2_SET_FLE_ADDR(fle, src); #ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA DPAA2_SET_FLE_BMT(fle); #endif } else { DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(src)); } fle->word4.fmt = fmt; DPAA2_SET_FLE_LEN(fle, len); fle++; /* destination frame list to destination buffer */ if (flags & RTE_QDMA_JOB_DEST_PHY) { #ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA DPAA2_SET_FLE_BMT(fle); #endif DPAA2_SET_FLE_ADDR(fle, dest); } else { DPAA2_SET_FLE_ADDR(fle, DPAA2_VADDR_TO_IOVA(dest)); } fle->word4.fmt = fmt; DPAA2_SET_FLE_LEN(fle, len); /* Final bit: 1, for last frame list */ DPAA2_SET_FLE_FIN(fle); } static inline int dpdmai_dev_set_fd_us( struct qdma_virt_queue *qdma_vq, struct qbman_fd *fd, struct rte_qdma_job **job, uint16_t nb_jobs) { struct rte_qdma_rbp *rbp = &qdma_vq->rbp; struct rte_qdma_job **ppjob; size_t iova; int ret = 0, loop; int ser = (qdma_vq->flags & RTE_QDMA_VQ_NO_RESPONSE) ? 0 : 1; for (loop = 0; loop < nb_jobs; loop++) { if (job[loop]->src & QDMA_RBP_UPPER_ADDRESS_MASK) iova = (size_t)job[loop]->dest; else iova = (size_t)job[loop]->src; /* Set the metadata */ job[loop]->vq_id = qdma_vq->vq_id; ppjob = (struct rte_qdma_job **)DPAA2_IOVA_TO_VADDR(iova) - 1; *ppjob = job[loop]; if ((rbp->drbp == 1) || (rbp->srbp == 1)) ret = qdma_populate_fd_pci((phys_addr_t)job[loop]->src, (phys_addr_t)job[loop]->dest, job[loop]->len, &fd[loop], rbp, ser); else ret = qdma_populate_fd_ddr((phys_addr_t)job[loop]->src, (phys_addr_t)job[loop]->dest, job[loop]->len, &fd[loop], ser); } return ret; } static uint32_t qdma_populate_sg_entry( struct rte_qdma_job **jobs, struct qdma_sg_entry *src_sge, struct qdma_sg_entry *dst_sge, uint16_t nb_jobs) { uint16_t i; uint32_t total_len = 0; uint64_t iova; for (i = 0; i < nb_jobs; i++) { /* source SG */ if (likely(jobs[i]->flags & RTE_QDMA_JOB_SRC_PHY)) { src_sge->addr_lo = (uint32_t)jobs[i]->src; src_sge->addr_hi = (jobs[i]->src >> 32); } else { iova = DPAA2_VADDR_TO_IOVA(jobs[i]->src); src_sge->addr_lo = (uint32_t)iova; src_sge->addr_hi = iova >> 32; } src_sge->data_len.data_len_sl0 = jobs[i]->len; src_sge->ctrl.sl = QDMA_SG_SL_LONG; src_sge->ctrl.fmt = QDMA_SG_FMT_SDB; #ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA src_sge->ctrl.bmt = QDMA_SG_BMT_ENABLE; #else src_sge->ctrl.bmt = QDMA_SG_BMT_DISABLE; #endif /* destination SG */ if (likely(jobs[i]->flags & RTE_QDMA_JOB_DEST_PHY)) { dst_sge->addr_lo = (uint32_t)jobs[i]->dest; dst_sge->addr_hi = (jobs[i]->dest >> 32); } else { iova = DPAA2_VADDR_TO_IOVA(jobs[i]->dest); dst_sge->addr_lo = (uint32_t)iova; dst_sge->addr_hi = iova >> 32; } dst_sge->data_len.data_len_sl0 = jobs[i]->len; dst_sge->ctrl.sl = QDMA_SG_SL_LONG; dst_sge->ctrl.fmt = QDMA_SG_FMT_SDB; #ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA dst_sge->ctrl.bmt = QDMA_SG_BMT_ENABLE; #else dst_sge->ctrl.bmt = QDMA_SG_BMT_DISABLE; #endif total_len += jobs[i]->len; if (i == (nb_jobs - 1)) { src_sge->ctrl.f = QDMA_SG_F; dst_sge->ctrl.f = QDMA_SG_F; } else { src_sge->ctrl.f = 0; dst_sge->ctrl.f = 0; } src_sge++; dst_sge++; } return total_len; } static inline int dpdmai_dev_set_multi_fd_lf_no_rsp( struct qdma_virt_queue *qdma_vq, struct qbman_fd *fd, struct rte_qdma_job **job, uint16_t nb_jobs) { struct rte_qdma_rbp *rbp = &qdma_vq->rbp; struct rte_qdma_job **ppjob; uint16_t i; void *elem; struct qbman_fle *fle; uint64_t elem_iova, fle_iova; for (i = 0; i < nb_jobs; i++) { elem = job[i]->usr_elem; #ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA elem_iova = rte_mempool_virt2iova(elem); #else elem_iova = DPAA2_VADDR_TO_IOVA(elem); #endif ppjob = (struct rte_qdma_job **) ((uintptr_t)(uint64_t)elem + QDMA_FLE_SINGLE_JOB_OFFSET); *ppjob = job[i]; job[i]->vq_id = qdma_vq->vq_id; fle = (struct qbman_fle *) ((uintptr_t)(uint64_t)elem + QDMA_FLE_FLE_OFFSET); fle_iova = elem_iova + QDMA_FLE_FLE_OFFSET; DPAA2_SET_FD_ADDR(&fd[i], fle_iova); DPAA2_SET_FD_COMPOUND_FMT(&fd[i]); memset(fle, 0, DPAA2_QDMA_MAX_FLE * sizeof(struct qbman_fle) + DPAA2_QDMA_MAX_SDD * sizeof(struct qdma_sdd)); dpaa2_qdma_populate_fle(fle, fle_iova, rbp, job[i]->src, job[i]->dest, job[i]->len, job[i]->flags, QBMAN_FLE_WORD4_FMT_SBF); } return 0; } static inline int dpdmai_dev_set_multi_fd_lf( struct qdma_virt_queue *qdma_vq, struct qbman_fd *fd, struct rte_qdma_job **job, uint16_t nb_jobs) { struct rte_qdma_rbp *rbp = &qdma_vq->rbp; struct rte_qdma_job **ppjob; uint16_t i; int ret; void *elem[RTE_QDMA_BURST_NB_MAX]; struct qbman_fle *fle; uint64_t elem_iova, fle_iova; ret = rte_mempool_get_bulk(qdma_vq->fle_pool, elem, nb_jobs); if (ret) { DPAA2_QDMA_DP_DEBUG("Memory alloc failed for FLE"); return ret; } for (i = 0; i < nb_jobs; i++) { #ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA elem_iova = rte_mempool_virt2iova(elem[i]); #else elem_iova = DPAA2_VADDR_TO_IOVA(elem[i]); #endif ppjob = (struct rte_qdma_job **) ((uintptr_t)(uint64_t)elem[i] + QDMA_FLE_SINGLE_JOB_OFFSET); *ppjob = job[i]; job[i]->vq_id = qdma_vq->vq_id; fle = (struct qbman_fle *) ((uintptr_t)(uint64_t)elem[i] + QDMA_FLE_FLE_OFFSET); fle_iova = elem_iova + QDMA_FLE_FLE_OFFSET; DPAA2_SET_FD_ADDR(&fd[i], fle_iova); DPAA2_SET_FD_COMPOUND_FMT(&fd[i]); DPAA2_SET_FD_FRC(&fd[i], QDMA_SER_CTX); memset(fle, 0, DPAA2_QDMA_MAX_FLE * sizeof(struct qbman_fle) + DPAA2_QDMA_MAX_SDD * sizeof(struct qdma_sdd)); dpaa2_qdma_populate_fle(fle, fle_iova, rbp, job[i]->src, job[i]->dest, job[i]->len, job[i]->flags, QBMAN_FLE_WORD4_FMT_SBF); } return 0; } static inline int dpdmai_dev_set_sg_fd_lf( struct qdma_virt_queue *qdma_vq, struct qbman_fd *fd, struct rte_qdma_job **job, uint16_t nb_jobs) { struct rte_qdma_rbp *rbp = &qdma_vq->rbp; struct rte_qdma_job **ppjob; void *elem; struct qbman_fle *fle; uint64_t elem_iova, fle_iova, src, dst; int ret = 0, i; struct qdma_sg_entry *src_sge, *dst_sge; uint32_t len, fmt, flags; /* * Get an FLE/SDD from FLE pool. * Note: IO metadata is before the FLE and SDD memory. */ if (qdma_vq->flags & RTE_QDMA_VQ_NO_RESPONSE) { elem = job[0]->usr_elem; } else { ret = rte_mempool_get(qdma_vq->fle_pool, &elem); if (ret) { DPAA2_QDMA_DP_DEBUG("Memory alloc failed for FLE"); return ret; } } #ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA elem_iova = rte_mempool_virt2iova(elem); #else elem_iova = DPAA2_VADDR_TO_IOVA(elem); #endif /* Set the metadata */ /* Save job context. */ *((uint16_t *) ((uintptr_t)(uint64_t)elem + QDMA_FLE_JOB_NB_OFFSET)) = nb_jobs; ppjob = (struct rte_qdma_job **) ((uintptr_t)(uint64_t)elem + QDMA_FLE_SG_JOBS_OFFSET); for (i = 0; i < nb_jobs; i++) ppjob[i] = job[i]; ppjob[0]->vq_id = qdma_vq->vq_id; fle = (struct qbman_fle *) ((uintptr_t)(uint64_t)elem + QDMA_FLE_FLE_OFFSET); fle_iova = elem_iova + QDMA_FLE_FLE_OFFSET; DPAA2_SET_FD_ADDR(fd, fle_iova); DPAA2_SET_FD_COMPOUND_FMT(fd); if (!(qdma_vq->flags & RTE_QDMA_VQ_NO_RESPONSE)) DPAA2_SET_FD_FRC(fd, QDMA_SER_CTX); /* Populate FLE */ if (likely(nb_jobs > 1)) { src_sge = (struct qdma_sg_entry *) ((uintptr_t)(uint64_t)elem + QDMA_FLE_SG_ENTRY_OFFSET); dst_sge = src_sge + DPAA2_QDMA_MAX_SG_NB; src = elem_iova + QDMA_FLE_SG_ENTRY_OFFSET; dst = src + DPAA2_QDMA_MAX_SG_NB * sizeof(struct qdma_sg_entry); len = qdma_populate_sg_entry(job, src_sge, dst_sge, nb_jobs); fmt = QBMAN_FLE_WORD4_FMT_SGE; flags = RTE_QDMA_JOB_SRC_PHY | RTE_QDMA_JOB_DEST_PHY; } else { src = job[0]->src; dst = job[0]->dest; len = job[0]->len; fmt = QBMAN_FLE_WORD4_FMT_SBF; flags = job[0]->flags; } memset(fle, 0, DPAA2_QDMA_MAX_FLE * sizeof(struct qbman_fle) + DPAA2_QDMA_MAX_SDD * sizeof(struct qdma_sdd)); dpaa2_qdma_populate_fle(fle, fle_iova, rbp, src, dst, len, flags, fmt); return 0; } static inline uint16_t dpdmai_dev_get_job_us( struct qdma_virt_queue *qdma_vq __rte_unused, const struct qbman_fd *fd, struct rte_qdma_job **job, uint16_t *nb_jobs) { uint16_t vqid; size_t iova; struct rte_qdma_job **ppjob; if (fd->simple_pci.saddr_hi & (QDMA_RBP_UPPER_ADDRESS_MASK >> 32)) iova = (size_t)(((uint64_t)fd->simple_pci.daddr_hi) << 32 | (uint64_t)fd->simple_pci.daddr_lo); else iova = (size_t)(((uint64_t)fd->simple_pci.saddr_hi) << 32 | (uint64_t)fd->simple_pci.saddr_lo); ppjob = (struct rte_qdma_job **)DPAA2_IOVA_TO_VADDR(iova) - 1; *job = (struct rte_qdma_job *)*ppjob; (*job)->status = (fd->simple_pci.acc_err << 8) | (fd->simple_pci.error); vqid = (*job)->vq_id; *nb_jobs = 1; return vqid; } static inline uint16_t dpdmai_dev_get_single_job_lf( struct qdma_virt_queue *qdma_vq, const struct qbman_fd *fd, struct rte_qdma_job **job, uint16_t *nb_jobs) { struct qbman_fle *fle; struct rte_qdma_job **ppjob = NULL; uint16_t status; /* * Fetch metadata from FLE. job and vq_id were set * in metadata in the enqueue operation. */ fle = (struct qbman_fle *) DPAA2_IOVA_TO_VADDR(DPAA2_GET_FD_ADDR(fd)); *nb_jobs = 1; ppjob = (struct rte_qdma_job **)((uintptr_t)(uint64_t)fle - QDMA_FLE_FLE_OFFSET + QDMA_FLE_SINGLE_JOB_OFFSET); status = (DPAA2_GET_FD_ERR(fd) << 8) | (DPAA2_GET_FD_FRC(fd) & 0xFF); *job = *ppjob; (*job)->status = status; /* Free FLE to the pool */ rte_mempool_put(qdma_vq->fle_pool, (void *) ((uintptr_t)(uint64_t)fle - QDMA_FLE_FLE_OFFSET)); return (*job)->vq_id; } static inline uint16_t dpdmai_dev_get_sg_job_lf( struct qdma_virt_queue *qdma_vq, const struct qbman_fd *fd, struct rte_qdma_job **job, uint16_t *nb_jobs) { struct qbman_fle *fle; struct rte_qdma_job **ppjob = NULL; uint16_t i, status; /* * Fetch metadata from FLE. job and vq_id were set * in metadata in the enqueue operation. */ fle = (struct qbman_fle *) DPAA2_IOVA_TO_VADDR(DPAA2_GET_FD_ADDR(fd)); *nb_jobs = *((uint16_t *)((uintptr_t)(uint64_t)fle - QDMA_FLE_FLE_OFFSET + QDMA_FLE_JOB_NB_OFFSET)); ppjob = (struct rte_qdma_job **)((uintptr_t)(uint64_t)fle - QDMA_FLE_FLE_OFFSET + QDMA_FLE_SG_JOBS_OFFSET); status = (DPAA2_GET_FD_ERR(fd) << 8) | (DPAA2_GET_FD_FRC(fd) & 0xFF); for (i = 0; i < (*nb_jobs); i++) { job[i] = ppjob[i]; job[i]->status = status; } /* Free FLE to the pool */ rte_mempool_put(qdma_vq->fle_pool, (void *) ((uintptr_t)(uint64_t)fle - QDMA_FLE_FLE_OFFSET)); return job[0]->vq_id; } /* Function to receive a QDMA job for a given device and queue*/ static int dpdmai_dev_dequeue_multijob_prefetch( struct qdma_virt_queue *qdma_vq, uint16_t *vq_id, struct rte_qdma_job **job, uint16_t nb_jobs) { struct qdma_hw_queue *qdma_pq = qdma_vq->hw_queue; struct dpaa2_dpdmai_dev *dpdmai_dev = qdma_pq->dpdmai_dev; uint16_t rxq_id = qdma_pq->queue_id; struct dpaa2_queue *rxq; struct qbman_result *dq_storage, *dq_storage1 = NULL; struct qbman_pull_desc pulldesc; struct qbman_swp *swp; struct queue_storage_info_t *q_storage; uint32_t fqid; uint8_t status, pending; uint8_t num_rx = 0; const struct qbman_fd *fd; uint16_t vqid, num_rx_ret; int ret, pull_size; if (qdma_vq->flags & RTE_QDMA_VQ_FD_SG_FORMAT) { /** Make sure there are enough space to get jobs.*/ if (unlikely(nb_jobs < DPAA2_QDMA_MAX_SG_NB)) return -EINVAL; nb_jobs = 1; } if (unlikely(!DPAA2_PER_LCORE_DPIO)) { ret = dpaa2_affine_qbman_swp(); if (ret) { DPAA2_QDMA_ERR( "Failed to allocate IO portal, tid: %d\n", rte_gettid()); return 0; } } swp = DPAA2_PER_LCORE_PORTAL; pull_size = (nb_jobs > dpaa2_dqrr_size) ? dpaa2_dqrr_size : nb_jobs; rxq = &(dpdmai_dev->rx_queue[rxq_id]); fqid = rxq->fqid; q_storage = rxq->q_storage; if (unlikely(!q_storage->active_dqs)) { q_storage->toggle = 0; dq_storage = q_storage->dq_storage[q_storage->toggle]; q_storage->last_num_pkts = pull_size; qbman_pull_desc_clear(&pulldesc); qbman_pull_desc_set_numframes(&pulldesc, q_storage->last_num_pkts); qbman_pull_desc_set_fq(&pulldesc, fqid); qbman_pull_desc_set_storage(&pulldesc, dq_storage, (size_t)(DPAA2_VADDR_TO_IOVA(dq_storage)), 1); if (check_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index)) { while (!qbman_check_command_complete( get_swp_active_dqs( DPAA2_PER_LCORE_DPIO->index))) ; clear_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index); } while (1) { if (qbman_swp_pull(swp, &pulldesc)) { DPAA2_QDMA_DP_WARN( "VDQ command not issued.QBMAN busy\n"); /* Portal was busy, try again */ continue; } break; } q_storage->active_dqs = dq_storage; q_storage->active_dpio_id = DPAA2_PER_LCORE_DPIO->index; set_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index, dq_storage); } dq_storage = q_storage->active_dqs; rte_prefetch0((void *)(size_t)(dq_storage)); rte_prefetch0((void *)(size_t)(dq_storage + 1)); /* Prepare next pull descriptor. This will give space for the * prefething done on DQRR entries */ q_storage->toggle ^= 1; dq_storage1 = q_storage->dq_storage[q_storage->toggle]; qbman_pull_desc_clear(&pulldesc); qbman_pull_desc_set_numframes(&pulldesc, pull_size); qbman_pull_desc_set_fq(&pulldesc, fqid); qbman_pull_desc_set_storage(&pulldesc, dq_storage1, (size_t)(DPAA2_VADDR_TO_IOVA(dq_storage1)), 1); /* Check if the previous issued command is completed. * Also seems like the SWP is shared between the Ethernet Driver * and the SEC driver. */ while (!qbman_check_command_complete(dq_storage)) ; if (dq_storage == get_swp_active_dqs(q_storage->active_dpio_id)) clear_swp_active_dqs(q_storage->active_dpio_id); pending = 1; do { /* Loop until the dq_storage is updated with * new token by QBMAN */ while (!qbman_check_new_result(dq_storage)) ; rte_prefetch0((void *)((size_t)(dq_storage + 2))); /* Check whether Last Pull command is Expired and * setting Condition for Loop termination */ if (qbman_result_DQ_is_pull_complete(dq_storage)) { pending = 0; /* Check for valid frame. */ status = qbman_result_DQ_flags(dq_storage); if (unlikely((status & QBMAN_DQ_STAT_VALIDFRAME) == 0)) continue; } fd = qbman_result_DQ_fd(dq_storage); vqid = qdma_vq->get_job(qdma_vq, fd, &job[num_rx], &num_rx_ret); if (vq_id) vq_id[num_rx] = vqid; dq_storage++; num_rx += num_rx_ret; } while (pending); if (check_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index)) { while (!qbman_check_command_complete( get_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index))) ; clear_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index); } /* issue a volatile dequeue command for next pull */ while (1) { if (qbman_swp_pull(swp, &pulldesc)) { DPAA2_QDMA_DP_WARN( "VDQ command is not issued. QBMAN is busy (2)\n"); continue; } break; } q_storage->active_dqs = dq_storage1; q_storage->active_dpio_id = DPAA2_PER_LCORE_DPIO->index; set_swp_active_dqs(DPAA2_PER_LCORE_DPIO->index, dq_storage1); return num_rx; } static int dpdmai_dev_dequeue_multijob_no_prefetch( struct qdma_virt_queue *qdma_vq, uint16_t *vq_id, struct rte_qdma_job **job, uint16_t nb_jobs) { struct qdma_hw_queue *qdma_pq = qdma_vq->hw_queue; struct dpaa2_dpdmai_dev *dpdmai_dev = qdma_pq->dpdmai_dev; uint16_t rxq_id = qdma_pq->queue_id; struct dpaa2_queue *rxq; struct qbman_result *dq_storage; struct qbman_pull_desc pulldesc; struct qbman_swp *swp; uint32_t fqid; uint8_t status, pending; uint8_t num_rx = 0; const struct qbman_fd *fd; uint16_t vqid, num_rx_ret; int ret, next_pull, num_pulled = 0; if (qdma_vq->flags & RTE_QDMA_VQ_FD_SG_FORMAT) { /** Make sure there are enough space to get jobs.*/ if (unlikely(nb_jobs < DPAA2_QDMA_MAX_SG_NB)) return -EINVAL; nb_jobs = 1; } next_pull = nb_jobs; if (unlikely(!DPAA2_PER_LCORE_DPIO)) { ret = dpaa2_affine_qbman_swp(); if (ret) { DPAA2_QDMA_ERR( "Failed to allocate IO portal, tid: %d\n", rte_gettid()); return 0; } } swp = DPAA2_PER_LCORE_PORTAL; rxq = &(dpdmai_dev->rx_queue[rxq_id]); fqid = rxq->fqid; do { dq_storage = rxq->q_storage->dq_storage[0]; /* Prepare dequeue descriptor */ qbman_pull_desc_clear(&pulldesc); qbman_pull_desc_set_fq(&pulldesc, fqid); qbman_pull_desc_set_storage(&pulldesc, dq_storage, (uint64_t)(DPAA2_VADDR_TO_IOVA(dq_storage)), 1); if (next_pull > dpaa2_dqrr_size) { qbman_pull_desc_set_numframes(&pulldesc, dpaa2_dqrr_size); next_pull -= dpaa2_dqrr_size; } else { qbman_pull_desc_set_numframes(&pulldesc, next_pull); next_pull = 0; } while (1) { if (qbman_swp_pull(swp, &pulldesc)) { DPAA2_QDMA_DP_WARN( "VDQ command not issued. QBMAN busy"); /* Portal was busy, try again */ continue; } break; } rte_prefetch0((void *)((size_t)(dq_storage + 1))); /* Check if the previous issued command is completed. */ while (!qbman_check_command_complete(dq_storage)) ; num_pulled = 0; pending = 1; do { /* Loop until dq_storage is updated * with new token by QBMAN */ while (!qbman_check_new_result(dq_storage)) ; rte_prefetch0((void *)((size_t)(dq_storage + 2))); if (qbman_result_DQ_is_pull_complete(dq_storage)) { pending = 0; /* Check for valid frame. */ status = qbman_result_DQ_flags(dq_storage); if (unlikely((status & QBMAN_DQ_STAT_VALIDFRAME) == 0)) continue; } fd = qbman_result_DQ_fd(dq_storage); vqid = qdma_vq->get_job(qdma_vq, fd, &job[num_rx], &num_rx_ret); if (vq_id) vq_id[num_rx] = vqid; dq_storage++; num_rx += num_rx_ret; num_pulled++; } while (pending); /* Last VDQ provided all packets and more packets are requested */ } while (next_pull && num_pulled == dpaa2_dqrr_size); return num_rx; } static int dpdmai_dev_enqueue_multi( struct qdma_virt_queue *qdma_vq, struct rte_qdma_job **job, uint16_t nb_jobs) { struct qdma_hw_queue *qdma_pq = qdma_vq->hw_queue; struct dpaa2_dpdmai_dev *dpdmai_dev = qdma_pq->dpdmai_dev; uint16_t txq_id = qdma_pq->queue_id; struct qbman_fd fd[RTE_QDMA_BURST_NB_MAX]; struct dpaa2_queue *txq; struct qbman_eq_desc eqdesc; struct qbman_swp *swp; int ret; uint32_t num_to_send = 0; uint16_t num_tx = 0; uint32_t enqueue_loop, retry_count, loop; if (unlikely(!DPAA2_PER_LCORE_DPIO)) { ret = dpaa2_affine_qbman_swp(); if (ret) { DPAA2_QDMA_ERR( "Failed to allocate IO portal, tid: %d\n", rte_gettid()); return 0; } } swp = DPAA2_PER_LCORE_PORTAL; txq = &(dpdmai_dev->tx_queue[txq_id]); /* Prepare enqueue descriptor */ qbman_eq_desc_clear(&eqdesc); qbman_eq_desc_set_fq(&eqdesc, txq->fqid); qbman_eq_desc_set_no_orp(&eqdesc, 0); qbman_eq_desc_set_response(&eqdesc, 0, 0); if (qdma_vq->flags & RTE_QDMA_VQ_FD_SG_FORMAT) { uint16_t fd_nb; uint16_t sg_entry_nb = nb_jobs > DPAA2_QDMA_MAX_SG_NB ? DPAA2_QDMA_MAX_SG_NB : nb_jobs; uint16_t job_idx = 0; uint16_t fd_sg_nb[8]; uint16_t nb_jobs_ret = 0; if (nb_jobs % DPAA2_QDMA_MAX_SG_NB) fd_nb = nb_jobs / DPAA2_QDMA_MAX_SG_NB + 1; else fd_nb = nb_jobs / DPAA2_QDMA_MAX_SG_NB; memset(&fd[0], 0, sizeof(struct qbman_fd) * fd_nb); for (loop = 0; loop < fd_nb; loop++) { ret = qdma_vq->set_fd(qdma_vq, &fd[loop], &job[job_idx], sg_entry_nb); if (unlikely(ret < 0)) return 0; fd_sg_nb[loop] = sg_entry_nb; nb_jobs -= sg_entry_nb; job_idx += sg_entry_nb; sg_entry_nb = nb_jobs > DPAA2_QDMA_MAX_SG_NB ? DPAA2_QDMA_MAX_SG_NB : nb_jobs; } /* Enqueue the packet to the QBMAN */ enqueue_loop = 0; retry_count = 0; while (enqueue_loop < fd_nb) { ret = qbman_swp_enqueue_multiple(swp, &eqdesc, &fd[enqueue_loop], NULL, fd_nb - enqueue_loop); if (unlikely(ret < 0)) { retry_count++; if (retry_count > DPAA2_MAX_TX_RETRY_COUNT) return nb_jobs_ret; } else { for (loop = 0; loop < (uint32_t)ret; loop++) nb_jobs_ret += fd_sg_nb[enqueue_loop + loop]; enqueue_loop += ret; retry_count = 0; } } return nb_jobs_ret; } memset(fd, 0, nb_jobs * sizeof(struct qbman_fd)); while (nb_jobs > 0) { num_to_send = (nb_jobs > dpaa2_eqcr_size) ? dpaa2_eqcr_size : nb_jobs; ret = qdma_vq->set_fd(qdma_vq, &fd[num_tx], &job[num_tx], num_to_send); if (unlikely(ret < 0)) break; /* Enqueue the packet to the QBMAN */ enqueue_loop = 0; retry_count = 0; loop = num_to_send; while (enqueue_loop < loop) { ret = qbman_swp_enqueue_multiple(swp, &eqdesc, &fd[num_tx + enqueue_loop], NULL, loop - enqueue_loop); if (unlikely(ret < 0)) { retry_count++; if (retry_count > DPAA2_MAX_TX_RETRY_COUNT) return num_tx; } else { enqueue_loop += ret; retry_count = 0; } } num_tx += num_to_send; nb_jobs -= loop; } return num_tx; } static struct qdma_hw_queue * alloc_hw_queue(uint32_t lcore_id) { struct qdma_hw_queue *queue = NULL; DPAA2_QDMA_FUNC_TRACE(); /* Get a free queue from the list */ TAILQ_FOREACH(queue, &qdma_queue_list, next) { if (queue->num_users == 0) { queue->lcore_id = lcore_id; queue->num_users++; break; } } return queue; } static void free_hw_queue(struct qdma_hw_queue *queue) { DPAA2_QDMA_FUNC_TRACE(); queue->num_users--; } static struct qdma_hw_queue * get_hw_queue(struct qdma_device *qdma_dev, uint32_t lcore_id) { struct qdma_per_core_info *core_info; struct qdma_hw_queue *queue, *temp; uint32_t least_num_users; int num_hw_queues, i; DPAA2_QDMA_FUNC_TRACE(); core_info = &qdma_core_info[lcore_id]; num_hw_queues = core_info->num_hw_queues; /* * Allocate a HW queue if there are less queues * than maximum per core queues configured */ if (num_hw_queues < qdma_dev->max_hw_queues_per_core) { queue = alloc_hw_queue(lcore_id); if (queue) { core_info->hw_queues[num_hw_queues] = queue; core_info->num_hw_queues++; return queue; } } queue = core_info->hw_queues[0]; /* In case there is no queue associated with the core return NULL */ if (!queue) return NULL; /* Fetch the least loaded H/W queue */ least_num_users = core_info->hw_queues[0]->num_users; for (i = 0; i < num_hw_queues; i++) { temp = core_info->hw_queues[i]; if (temp->num_users < least_num_users) queue = temp; } if (queue) queue->num_users++; return queue; } static void put_hw_queue(struct qdma_hw_queue *queue) { struct qdma_per_core_info *core_info; int lcore_id, num_hw_queues, i; DPAA2_QDMA_FUNC_TRACE(); /* * If this is the last user of the queue free it. * Also remove it from QDMA core info. */ if (queue->num_users == 1) { free_hw_queue(queue); /* Remove the physical queue from core info */ lcore_id = queue->lcore_id; core_info = &qdma_core_info[lcore_id]; num_hw_queues = core_info->num_hw_queues; for (i = 0; i < num_hw_queues; i++) { if (queue == core_info->hw_queues[i]) break; } for (; i < num_hw_queues - 1; i++) core_info->hw_queues[i] = core_info->hw_queues[i + 1]; core_info->hw_queues[i] = NULL; } else { queue->num_users--; } } static int dpaa2_qdma_attr_get(struct rte_rawdev *rawdev, __rte_unused const char *attr_name, uint64_t *attr_value) { struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private; struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev; struct rte_qdma_attr *qdma_attr = (struct rte_qdma_attr *)attr_value; DPAA2_QDMA_FUNC_TRACE(); qdma_attr->num_hw_queues = qdma_dev->num_hw_queues; return 0; } static int dpaa2_qdma_reset(struct rte_rawdev *rawdev) { struct qdma_hw_queue *queue; struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private; struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev; int i; DPAA2_QDMA_FUNC_TRACE(); /* In case QDMA device is not in stopped state, return -EBUSY */ if (qdma_dev->state == 1) { DPAA2_QDMA_ERR( "Device is in running state. Stop before reset."); return -EBUSY; } /* In case there are pending jobs on any VQ, return -EBUSY */ for (i = 0; i < qdma_dev->max_vqs; i++) { if (qdma_dev->vqs[i].in_use && (qdma_dev->vqs[i].num_enqueues != qdma_dev->vqs[i].num_dequeues)) { DPAA2_QDMA_ERR("Jobs are still pending on VQ: %d", i); return -EBUSY; } } /* Reset HW queues */ TAILQ_FOREACH(queue, &qdma_queue_list, next) queue->num_users = 0; /* Reset and free virtual queues */ for (i = 0; i < qdma_dev->max_vqs; i++) { if (qdma_dev->vqs[i].status_ring) rte_ring_free(qdma_dev->vqs[i].status_ring); } if (qdma_dev->vqs) rte_free(qdma_dev->vqs); qdma_dev->vqs = NULL; /* Reset per core info */ memset(&qdma_core_info, 0, sizeof(struct qdma_per_core_info) * RTE_MAX_LCORE); /* Reset QDMA device structure */ qdma_dev->max_hw_queues_per_core = 0; qdma_dev->fle_queue_pool_cnt = 0; qdma_dev->max_vqs = 0; return 0; } static int dpaa2_qdma_configure(const struct rte_rawdev *rawdev, rte_rawdev_obj_t config, size_t config_size) { char name[32]; /* RTE_MEMZONE_NAMESIZE = 32 */ struct rte_qdma_config *qdma_config = (struct rte_qdma_config *)config; struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private; struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev; DPAA2_QDMA_FUNC_TRACE(); if (config_size != sizeof(*qdma_config)) return -EINVAL; /* In case QDMA device is not in stopped state, return -EBUSY */ if (qdma_dev->state == 1) { DPAA2_QDMA_ERR( "Device is in running state. Stop before config."); return -1; } /* Set max HW queue per core */ if (qdma_config->max_hw_queues_per_core > MAX_HW_QUEUE_PER_CORE) { DPAA2_QDMA_ERR("H/W queues per core is more than: %d", MAX_HW_QUEUE_PER_CORE); return -EINVAL; } qdma_dev->max_hw_queues_per_core = qdma_config->max_hw_queues_per_core; /* Allocate Virtual Queues */ sprintf(name, "qdma_%d_vq", rawdev->dev_id); qdma_dev->vqs = rte_malloc(name, (sizeof(struct qdma_virt_queue) * qdma_config->max_vqs), RTE_CACHE_LINE_SIZE); if (!qdma_dev->vqs) { DPAA2_QDMA_ERR("qdma_virtual_queues allocation failed"); return -ENOMEM; } qdma_dev->max_vqs = qdma_config->max_vqs; qdma_dev->fle_queue_pool_cnt = qdma_config->fle_queue_pool_cnt; return 0; } static int dpaa2_qdma_start(struct rte_rawdev *rawdev) { struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private; struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev; DPAA2_QDMA_FUNC_TRACE(); qdma_dev->state = 1; return 0; } static int check_devargs_handler(__rte_unused const char *key, const char *value, __rte_unused void *opaque) { if (strcmp(value, "1")) return -1; return 0; } static int dpaa2_get_devargs(struct rte_devargs *devargs, const char *key) { struct rte_kvargs *kvlist; if (!devargs) return 0; kvlist = rte_kvargs_parse(devargs->args, NULL); if (!kvlist) return 0; if (!rte_kvargs_count(kvlist, key)) { rte_kvargs_free(kvlist); return 0; } if (rte_kvargs_process(kvlist, key, check_devargs_handler, NULL) < 0) { rte_kvargs_free(kvlist); return 0; } rte_kvargs_free(kvlist); return 1; } static int dpaa2_qdma_queue_setup(struct rte_rawdev *rawdev, __rte_unused uint16_t queue_id, rte_rawdev_obj_t queue_conf, size_t conf_size) { char ring_name[32]; char pool_name[64]; int i; struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private; struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev; struct rte_qdma_queue_config *q_config = (struct rte_qdma_queue_config *)queue_conf; uint32_t pool_size; DPAA2_QDMA_FUNC_TRACE(); if (conf_size != sizeof(*q_config)) return -EINVAL; rte_spinlock_lock(&qdma_dev->lock); /* Get a free Virtual Queue */ for (i = 0; i < qdma_dev->max_vqs; i++) { if (qdma_dev->vqs[i].in_use == 0) break; } /* Return in case no VQ is free */ if (i == qdma_dev->max_vqs) { rte_spinlock_unlock(&qdma_dev->lock); DPAA2_QDMA_ERR("Unable to get lock on QDMA device"); return -ENODEV; } if (q_config->flags & RTE_QDMA_VQ_FD_SG_FORMAT) { if (!(q_config->flags & RTE_QDMA_VQ_EXCLUSIVE_PQ)) { DPAA2_QDMA_ERR( "qDMA SG format only supports physical queue!"); rte_spinlock_unlock(&qdma_dev->lock); return -ENODEV; } if (!(q_config->flags & RTE_QDMA_VQ_FD_LONG_FORMAT)) { DPAA2_QDMA_ERR( "qDMA SG format only supports long FD format!"); rte_spinlock_unlock(&qdma_dev->lock); return -ENODEV; } pool_size = QDMA_FLE_SG_POOL_SIZE; } else { pool_size = QDMA_FLE_SINGLE_POOL_SIZE; } if (q_config->flags & RTE_QDMA_VQ_EXCLUSIVE_PQ) { /* Allocate HW queue for a VQ */ qdma_dev->vqs[i].hw_queue = alloc_hw_queue(q_config->lcore_id); qdma_dev->vqs[i].exclusive_hw_queue = 1; } else { /* Allocate a Ring for Virtual Queue in VQ mode */ snprintf(ring_name, sizeof(ring_name), "status ring %d", i); qdma_dev->vqs[i].status_ring = rte_ring_create(ring_name, qdma_dev->fle_queue_pool_cnt, rte_socket_id(), 0); if (!qdma_dev->vqs[i].status_ring) { DPAA2_QDMA_ERR("Status ring creation failed for vq"); rte_spinlock_unlock(&qdma_dev->lock); return rte_errno; } /* Get a HW queue (shared) for a VQ */ qdma_dev->vqs[i].hw_queue = get_hw_queue(qdma_dev, q_config->lcore_id); qdma_dev->vqs[i].exclusive_hw_queue = 0; } if (qdma_dev->vqs[i].hw_queue == NULL) { DPAA2_QDMA_ERR("No H/W queue available for VQ"); if (qdma_dev->vqs[i].status_ring) rte_ring_free(qdma_dev->vqs[i].status_ring); qdma_dev->vqs[i].status_ring = NULL; rte_spinlock_unlock(&qdma_dev->lock); return -ENODEV; } snprintf(pool_name, sizeof(pool_name), "qdma_fle_pool%u_queue%d", getpid(), i); qdma_dev->vqs[i].fle_pool = rte_mempool_create(pool_name, qdma_dev->fle_queue_pool_cnt, pool_size, QDMA_FLE_CACHE_SIZE(qdma_dev->fle_queue_pool_cnt), 0, NULL, NULL, NULL, NULL, SOCKET_ID_ANY, 0); if (!qdma_dev->vqs[i].fle_pool) { DPAA2_QDMA_ERR("qdma_fle_pool create failed"); rte_spinlock_unlock(&qdma_dev->lock); return -ENOMEM; } qdma_dev->vqs[i].flags = q_config->flags; qdma_dev->vqs[i].in_use = 1; qdma_dev->vqs[i].lcore_id = q_config->lcore_id; memset(&qdma_dev->vqs[i].rbp, 0, sizeof(struct rte_qdma_rbp)); if (q_config->flags & RTE_QDMA_VQ_FD_LONG_FORMAT) { if (q_config->flags & RTE_QDMA_VQ_FD_SG_FORMAT) { qdma_dev->vqs[i].set_fd = dpdmai_dev_set_sg_fd_lf; qdma_dev->vqs[i].get_job = dpdmai_dev_get_sg_job_lf; } else { if (q_config->flags & RTE_QDMA_VQ_NO_RESPONSE) qdma_dev->vqs[i].set_fd = dpdmai_dev_set_multi_fd_lf_no_rsp; else qdma_dev->vqs[i].set_fd = dpdmai_dev_set_multi_fd_lf; qdma_dev->vqs[i].get_job = dpdmai_dev_get_single_job_lf; } } else { qdma_dev->vqs[i].set_fd = dpdmai_dev_set_fd_us; qdma_dev->vqs[i].get_job = dpdmai_dev_get_job_us; } if (dpaa2_get_devargs(rawdev->device->devargs, DPAA2_QDMA_NO_PREFETCH) || (getenv("DPAA2_NO_QDMA_PREFETCH_RX"))) { /* If no prefetch is configured. */ qdma_dev->vqs[i].dequeue_job = dpdmai_dev_dequeue_multijob_no_prefetch; DPAA2_QDMA_INFO("No Prefetch RX Mode enabled"); } else { qdma_dev->vqs[i].dequeue_job = dpdmai_dev_dequeue_multijob_prefetch; } qdma_dev->vqs[i].enqueue_job = dpdmai_dev_enqueue_multi; if (q_config->rbp != NULL) memcpy(&qdma_dev->vqs[i].rbp, q_config->rbp, sizeof(struct rte_qdma_rbp)); rte_spinlock_unlock(&qdma_dev->lock); return i; } static int dpaa2_qdma_enqueue(struct rte_rawdev *rawdev, __rte_unused struct rte_rawdev_buf **buffers, unsigned int nb_jobs, rte_rawdev_obj_t context) { struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private; struct rte_qdma_enqdeq *e_context = (struct rte_qdma_enqdeq *)context; struct qdma_virt_queue *qdma_vq = &dpdmai_dev->qdma_dev->vqs[e_context->vq_id]; int ret; /* Return error in case of wrong lcore_id */ if (rte_lcore_id() != qdma_vq->lcore_id) { DPAA2_QDMA_ERR("QDMA enqueue for vqid %d on wrong core", e_context->vq_id); return -EINVAL; } ret = qdma_vq->enqueue_job(qdma_vq, e_context->job, nb_jobs); if (ret < 0) { DPAA2_QDMA_ERR("DPDMAI device enqueue failed: %d", ret); return ret; } qdma_vq->num_enqueues += ret; return ret; } static int dpaa2_qdma_dequeue(struct rte_rawdev *rawdev, __rte_unused struct rte_rawdev_buf **buffers, unsigned int nb_jobs, rte_rawdev_obj_t cntxt) { struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private; struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev; struct rte_qdma_enqdeq *context = (struct rte_qdma_enqdeq *)cntxt; struct qdma_virt_queue *qdma_vq = &qdma_dev->vqs[context->vq_id]; struct qdma_virt_queue *temp_qdma_vq; int ret = 0, i; unsigned int ring_count; if (qdma_vq->flags & RTE_QDMA_VQ_FD_SG_FORMAT) { /** Make sure there are enough space to get jobs.*/ if (unlikely(nb_jobs < DPAA2_QDMA_MAX_SG_NB)) return -EINVAL; } /* Return error in case of wrong lcore_id */ if (rte_lcore_id() != (unsigned int)(qdma_vq->lcore_id)) { DPAA2_QDMA_WARN("QDMA dequeue for vqid %d on wrong core", context->vq_id); return -1; } /* Only dequeue when there are pending jobs on VQ */ if (qdma_vq->num_enqueues == qdma_vq->num_dequeues) return 0; if (!(qdma_vq->flags & RTE_QDMA_VQ_FD_SG_FORMAT) && qdma_vq->num_enqueues < (qdma_vq->num_dequeues + nb_jobs)) nb_jobs = (qdma_vq->num_enqueues - qdma_vq->num_dequeues); if (qdma_vq->exclusive_hw_queue) { /* In case of exclusive queue directly fetch from HW queue */ ret = qdma_vq->dequeue_job(qdma_vq, NULL, context->job, nb_jobs); if (ret < 0) { DPAA2_QDMA_ERR( "Dequeue from DPDMAI device failed: %d", ret); return ret; } qdma_vq->num_dequeues += ret; } else { uint16_t temp_vq_id[RTE_QDMA_BURST_NB_MAX]; /* * Get the QDMA completed jobs from the software ring. * In case they are not available on the ring poke the HW * to fetch completed jobs from corresponding HW queues */ ring_count = rte_ring_count(qdma_vq->status_ring); if (ring_count < nb_jobs) { /* TODO - How to have right budget */ ret = qdma_vq->dequeue_job(qdma_vq, temp_vq_id, context->job, nb_jobs); for (i = 0; i < ret; i++) { temp_qdma_vq = &qdma_dev->vqs[temp_vq_id[i]]; rte_ring_enqueue(temp_qdma_vq->status_ring, (void *)(context->job[i])); } ring_count = rte_ring_count( qdma_vq->status_ring); } if (ring_count) { /* Dequeue job from the software ring * to provide to the user */ ret = rte_ring_dequeue_bulk(qdma_vq->status_ring, (void **)context->job, ring_count, NULL); if (ret) qdma_vq->num_dequeues += ret; } } return ret; } void rte_qdma_vq_stats(struct rte_rawdev *rawdev, uint16_t vq_id, struct rte_qdma_vq_stats *vq_status) { struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private; struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev; struct qdma_virt_queue *qdma_vq = &qdma_dev->vqs[vq_id]; if (qdma_vq->in_use) { vq_status->exclusive_hw_queue = qdma_vq->exclusive_hw_queue; vq_status->lcore_id = qdma_vq->lcore_id; vq_status->num_enqueues = qdma_vq->num_enqueues; vq_status->num_dequeues = qdma_vq->num_dequeues; vq_status->num_pending_jobs = vq_status->num_enqueues - vq_status->num_dequeues; } } static int dpaa2_qdma_queue_release(struct rte_rawdev *rawdev, uint16_t vq_id) { struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private; struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev; struct qdma_virt_queue *qdma_vq = &qdma_dev->vqs[vq_id]; DPAA2_QDMA_FUNC_TRACE(); /* In case there are pending jobs on any VQ, return -EBUSY */ if (qdma_vq->num_enqueues != qdma_vq->num_dequeues) return -EBUSY; rte_spinlock_lock(&qdma_dev->lock); if (qdma_vq->exclusive_hw_queue) free_hw_queue(qdma_vq->hw_queue); else { if (qdma_vq->status_ring) rte_ring_free(qdma_vq->status_ring); put_hw_queue(qdma_vq->hw_queue); } if (qdma_vq->fle_pool) rte_mempool_free(qdma_vq->fle_pool); memset(qdma_vq, 0, sizeof(struct qdma_virt_queue)); rte_spinlock_unlock(&qdma_dev->lock); return 0; } static void dpaa2_qdma_stop(struct rte_rawdev *rawdev) { struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private; struct qdma_device *qdma_dev = dpdmai_dev->qdma_dev; DPAA2_QDMA_FUNC_TRACE(); qdma_dev->state = 0; } static int dpaa2_qdma_close(struct rte_rawdev *rawdev) { DPAA2_QDMA_FUNC_TRACE(); dpaa2_qdma_reset(rawdev); return 0; } static struct rte_rawdev_ops dpaa2_qdma_ops = { .dev_configure = dpaa2_qdma_configure, .dev_start = dpaa2_qdma_start, .dev_stop = dpaa2_qdma_stop, .dev_reset = dpaa2_qdma_reset, .dev_close = dpaa2_qdma_close, .queue_setup = dpaa2_qdma_queue_setup, .queue_release = dpaa2_qdma_queue_release, .attr_get = dpaa2_qdma_attr_get, .enqueue_bufs = dpaa2_qdma_enqueue, .dequeue_bufs = dpaa2_qdma_dequeue, }; static int add_hw_queues_to_list(struct dpaa2_dpdmai_dev *dpdmai_dev) { struct qdma_hw_queue *queue; int i; DPAA2_QDMA_FUNC_TRACE(); for (i = 0; i < dpdmai_dev->num_queues; i++) { queue = rte_zmalloc(NULL, sizeof(struct qdma_hw_queue), 0); if (!queue) { DPAA2_QDMA_ERR( "Memory allocation failed for QDMA queue"); return -ENOMEM; } queue->dpdmai_dev = dpdmai_dev; queue->queue_id = i; TAILQ_INSERT_TAIL(&qdma_queue_list, queue, next); dpdmai_dev->qdma_dev->num_hw_queues++; } return 0; } static void remove_hw_queues_from_list(struct dpaa2_dpdmai_dev *dpdmai_dev) { struct qdma_hw_queue *queue = NULL; struct qdma_hw_queue *tqueue = NULL; DPAA2_QDMA_FUNC_TRACE(); TAILQ_FOREACH_SAFE(queue, &qdma_queue_list, next, tqueue) { if (queue->dpdmai_dev == dpdmai_dev) { TAILQ_REMOVE(&qdma_queue_list, queue, next); rte_free(queue); queue = NULL; } } } static int dpaa2_dpdmai_dev_uninit(struct rte_rawdev *rawdev) { struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private; int ret, i; DPAA2_QDMA_FUNC_TRACE(); /* Remove HW queues from global list */ remove_hw_queues_from_list(dpdmai_dev); ret = dpdmai_disable(&dpdmai_dev->dpdmai, CMD_PRI_LOW, dpdmai_dev->token); if (ret) DPAA2_QDMA_ERR("dmdmai disable failed"); /* Set up the DQRR storage for Rx */ for (i = 0; i < dpdmai_dev->num_queues; i++) { struct dpaa2_queue *rxq = &(dpdmai_dev->rx_queue[i]); if (rxq->q_storage) { dpaa2_free_dq_storage(rxq->q_storage); rte_free(rxq->q_storage); } } /* Close the device at underlying layer*/ ret = dpdmai_close(&dpdmai_dev->dpdmai, CMD_PRI_LOW, dpdmai_dev->token); if (ret) DPAA2_QDMA_ERR("Failure closing dpdmai device"); return 0; } static int dpaa2_dpdmai_dev_init(struct rte_rawdev *rawdev, int dpdmai_id) { struct dpaa2_dpdmai_dev *dpdmai_dev = rawdev->dev_private; struct dpdmai_rx_queue_cfg rx_queue_cfg; struct dpdmai_attr attr; struct dpdmai_rx_queue_attr rx_attr; struct dpdmai_tx_queue_attr tx_attr; int ret, i; DPAA2_QDMA_FUNC_TRACE(); /* Open DPDMAI device */ dpdmai_dev->dpdmai_id = dpdmai_id; dpdmai_dev->dpdmai.regs = dpaa2_get_mcp_ptr(MC_PORTAL_INDEX); dpdmai_dev->qdma_dev = &q_dev; ret = dpdmai_open(&dpdmai_dev->dpdmai, CMD_PRI_LOW, dpdmai_dev->dpdmai_id, &dpdmai_dev->token); if (ret) { DPAA2_QDMA_ERR("dpdmai_open() failed with err: %d", ret); return ret; } /* Get DPDMAI attributes */ ret = dpdmai_get_attributes(&dpdmai_dev->dpdmai, CMD_PRI_LOW, dpdmai_dev->token, &attr); if (ret) { DPAA2_QDMA_ERR("dpdmai get attributes failed with err: %d", ret); goto init_err; } dpdmai_dev->num_queues = attr.num_of_queues; /* Set up Rx Queues */ for (i = 0; i < dpdmai_dev->num_queues; i++) { struct dpaa2_queue *rxq; memset(&rx_queue_cfg, 0, sizeof(struct dpdmai_rx_queue_cfg)); ret = dpdmai_set_rx_queue(&dpdmai_dev->dpdmai, CMD_PRI_LOW, dpdmai_dev->token, i, 0, &rx_queue_cfg); if (ret) { DPAA2_QDMA_ERR("Setting Rx queue failed with err: %d", ret); goto init_err; } /* Allocate DQ storage for the DPDMAI Rx queues */ rxq = &(dpdmai_dev->rx_queue[i]); rxq->q_storage = rte_malloc("dq_storage", sizeof(struct queue_storage_info_t), RTE_CACHE_LINE_SIZE); if (!rxq->q_storage) { DPAA2_QDMA_ERR("q_storage allocation failed"); ret = -ENOMEM; goto init_err; } memset(rxq->q_storage, 0, sizeof(struct queue_storage_info_t)); ret = dpaa2_alloc_dq_storage(rxq->q_storage); if (ret) { DPAA2_QDMA_ERR("dpaa2_alloc_dq_storage failed"); goto init_err; } } /* Get Rx and Tx queues FQID's */ for (i = 0; i < dpdmai_dev->num_queues; i++) { ret = dpdmai_get_rx_queue(&dpdmai_dev->dpdmai, CMD_PRI_LOW, dpdmai_dev->token, i, 0, &rx_attr); if (ret) { DPAA2_QDMA_ERR("Reading device failed with err: %d", ret); goto init_err; } dpdmai_dev->rx_queue[i].fqid = rx_attr.fqid; ret = dpdmai_get_tx_queue(&dpdmai_dev->dpdmai, CMD_PRI_LOW, dpdmai_dev->token, i, 0, &tx_attr); if (ret) { DPAA2_QDMA_ERR("Reading device failed with err: %d", ret); goto init_err; } dpdmai_dev->tx_queue[i].fqid = tx_attr.fqid; } /* Enable the device */ ret = dpdmai_enable(&dpdmai_dev->dpdmai, CMD_PRI_LOW, dpdmai_dev->token); if (ret) { DPAA2_QDMA_ERR("Enabling device failed with err: %d", ret); goto init_err; } /* Add the HW queue to the global list */ ret = add_hw_queues_to_list(dpdmai_dev); if (ret) { DPAA2_QDMA_ERR("Adding H/W queue to list failed"); goto init_err; } if (!dpaa2_coherent_no_alloc_cache) { if (dpaa2_svr_family == SVR_LX2160A) { dpaa2_coherent_no_alloc_cache = DPAA2_LX2_COHERENT_NO_ALLOCATE_CACHE; dpaa2_coherent_alloc_cache = DPAA2_LX2_COHERENT_ALLOCATE_CACHE; } else { dpaa2_coherent_no_alloc_cache = DPAA2_COHERENT_NO_ALLOCATE_CACHE; dpaa2_coherent_alloc_cache = DPAA2_COHERENT_ALLOCATE_CACHE; } } DPAA2_QDMA_DEBUG("Initialized dpdmai object successfully"); rte_spinlock_init(&dpdmai_dev->qdma_dev->lock); return 0; init_err: dpaa2_dpdmai_dev_uninit(rawdev); return ret; } static int rte_dpaa2_qdma_probe(struct rte_dpaa2_driver *dpaa2_drv, struct rte_dpaa2_device *dpaa2_dev) { struct rte_rawdev *rawdev; int ret; DPAA2_QDMA_FUNC_TRACE(); rawdev = rte_rawdev_pmd_allocate(dpaa2_dev->device.name, sizeof(struct dpaa2_dpdmai_dev), rte_socket_id()); if (!rawdev) { DPAA2_QDMA_ERR("Unable to allocate rawdevice"); return -EINVAL; } dpaa2_dev->rawdev = rawdev; rawdev->dev_ops = &dpaa2_qdma_ops; rawdev->device = &dpaa2_dev->device; rawdev->driver_name = dpaa2_drv->driver.name; /* Invoke PMD device initialization function */ ret = dpaa2_dpdmai_dev_init(rawdev, dpaa2_dev->object_id); if (ret) { rte_rawdev_pmd_release(rawdev); return ret; } /* Reset the QDMA device */ ret = dpaa2_qdma_reset(rawdev); if (ret) { DPAA2_QDMA_ERR("Resetting QDMA failed"); return ret; } return 0; } static int rte_dpaa2_qdma_remove(struct rte_dpaa2_device *dpaa2_dev) { struct rte_rawdev *rawdev = dpaa2_dev->rawdev; int ret; DPAA2_QDMA_FUNC_TRACE(); dpaa2_dpdmai_dev_uninit(rawdev); ret = rte_rawdev_pmd_release(rawdev); if (ret) DPAA2_QDMA_ERR("Device cleanup failed"); return 0; } static struct rte_dpaa2_driver rte_dpaa2_qdma_pmd = { .drv_flags = RTE_DPAA2_DRV_IOVA_AS_VA, .drv_type = DPAA2_QDMA, .probe = rte_dpaa2_qdma_probe, .remove = rte_dpaa2_qdma_remove, }; RTE_PMD_REGISTER_DPAA2(dpaa2_qdma, rte_dpaa2_qdma_pmd); RTE_PMD_REGISTER_PARAM_STRING(dpaa2_qdma, "no_prefetch= "); RTE_LOG_REGISTER(dpaa2_qdma_logtype, pmd.raw.dpaa2.qdma, INFO);